• Что можно приготовить из кальмаров: быстро и вкусно

    Холод применяют в технологиях многих процессов переработки сельскохозяйственной продукции. Благодаря холодильникам значительно сокращаются потери при хранении продукции. Охлажденные продукты можно транспортировать на большие расстояния.

    Молоко, предназначенное для переработки или реализации, как правило, предварительно охлаждают. Перед отправкой на предприятие молочной промышленности молоко допускается хранить не более 20 ч при температуре не выше 10 "С.

    В сельском хозяйстве мясо охлаждают в основном на фермах и птицефабриках. При этом используют следующие способы охлаждения: в воздухе, холодной воде, в воде с тающим льдом и орошением холодной водой. Подмораживание мяса птицы производят либо холодным воздухом, либо погружением в холодный рассол. Воздушное подмораживание осуществляют при температуре воздуха в холодильных камерах от -23 до -25 °С и скорости движения воздуха 3...4 м/с. Для подмораживания погружением в рассол применяют растворы хлористого кальция или пропиленгликоля с температурой от -10 °С и ниже.

    Мясо, предназначенное для длительного хранения, замораживают теми же способами, что и подмораживание. Замораживание

    воздухом осуществляют при температуре охлаждаемого воздуха от -30 до -40 °С, при замораживании в рассоле температура раствора равна -25...-28 °С.

    Яйца хранят в холодильниках при температуре -1...-2 °С и относительной влажности 85...88 %. После охлаждения до 2...3 °С их помещают в камеру хранения.

    Фрукты и овощи охлаждают в стационарных хранилищах. Плодоовощную продукцию хранят в холодильных камерах с охлаждающими батареями, в которых циркулирует холодный агент или рассол.

    В системах с воздушным охлаждением сначала охлаждается воздух, который затем вентиляторами нагнетается в камеры хранения. В смешанных системах продукты охлаждаются холодным воздухом и от батареи.

    В сельском хозяйстве холод получают как безмашинным способом (ледники, льдосоленое охлаждение), так и при помощи специальных холодильных машин. При машинном охлаждении теплота от охлаждаемой среды отводится во внешнее окружающее пространство при помощи низкокипящих холодильных агентов (фреон или аммиак).

    В сельском хозяйстве широко применяют паровые компрессоры и абсорбционные холодильные машины.

    Простейший способ получения температуры рабочего тела ниже температуры окружающей среды заключается в том, что это рабочее тело (холодильный агент) сжимают в компрессоре, затем охлаждают до температуры окружающей среды и после этого подвергают адиабатическому расширению. При этом рабочее тело совершает работу за счет своей внутренней энергии и температура его уменьшается по сравнению с температурой окружающей среды. Таким образом, рабочее тело становится источником получения холода.

    В качестве холодильных агентов в принципе можно применять любой пар или газ. В первых холодильных машинах с механическим приводом в качестве холодильного агента применяли воздух, но уже с конца XIX в. он был заменен аммиаком и углекислотой, поскольку воздушная холодильная машина менее экономична и более громоздка, чем паровая, из-за большого расхода воздуха, обусловленного его малой теплоемкостью.

    В современных холодильных установках рабочим телом являются пары жидкостей, которые при давлениях, близких к атмосферному, кипят при низких температурах. Примерами таких холодильных агентов могут служить аммиак NH3, сернистый ангидрид SO2, диоксид углерода С0 2 и фреоны - фторохлоропроизводные углеводороды типа C m H x F y Cl2. Температура кипения аммиака при атмосферном давлении составляет 33,5 °С, «Фреона- 12» -30°С, «Фреона-22» -42 °С.

    В качестве холодильных агентов широко применяют фреоны - галоидные производные насыщенных углеводородов (C m H n), полученные путем замены атомов водорода атомами хлора и фтора. В технике из-за большого разнообразия фреонов и относительно сложного их наименования установлена условная числовая система обозначения, согласно которой каждое такое соединение в зависимости от химической формулы имеет свое число. Первые цифры в этом числе условно обозначают углеводород, производным которого является данный фреон: метан - 1, этан - 11, пропан - 21. Если в соединении присутствуют незамещенные атомы водорода, то их число прибавляют к этим цифрам. Далее к полученной сумме или к первоначальному числу (если все атомы водорода в соединении замещены) дописывают в виде следующего знака цифру, выражающую число атомов фтора. Так получают обозначения: R11 вместо монофтортрихлорметана CFCI2, R12 вместо дифтордихлорметана CF 2 C1 2 и т. д.

    В холодильных установках в качестве холодильного агента обычно используют R12, а в перспективе будут широко применять R22 и R142. Преимущества фреонов - относительная безвредность, химическая инертность, негорючесть и взрывобезопас- ность; недостатки - низкая вязкость, способствующая утечке, и возможность растворяться в масле.

    На рисунке 8.15 показана принципиальная схема парокомпрессорной холодильной установки и ее идеальный цикл в 75-диаграмме. В компрессоре 1 сжимается влажный пар холодильного агента, в результате чего (участок а-Ь) получается сухой насыщенный или перегретый пар. Обычно степень перегрева не превышает

    130... 140 “С, чтобы не усложнять эксплуатацию компрессора из-за повышенных механических напряжений и не применять масла

    Рис. 8.15.

    / - компрессор; 2 - охлаждаемое помещение; 3- дроссельный вентиль; 4 - конденсатор специальных сортов. Из компрессора перегретый пар с параметрами pi и 02 поступает в охладитель (конденсатор 2). В конденсаторе при постоянном давлении перегретый пар отдает охлаждающей воде теплоту перегрева (процесс Ь-с) и его температура становится равной температуре насыщения 0 н2 . Отдавая в дальнейшем теплоту парообразования (процесс c-d), насыщенный пар превращается в кипящую жидкость (точка d). Эта жидкость поступает к дроссельному вентилю 3, пройдя через который она превращается в насыщенный пар небольшой степени сухости (х 5 = 0,1...0,2).

    Известно, что энтальпия рабочего тела до и после дросселирования одинакова, а давление и температура понижаются. На 7s- диаграмме изображена штриховая линия постоянной энтальпии d-e, точка е которой характеризует состояние пара после дросселирования.

    Далее влажный пар поступает в охлаждаемую емкость, называемую рефрижератором 4. Здесь при неизменных давлении и температуре пар расширяется (процесс е-а), отнимая определенное количество теплоты. Степень сухости пара при этом увеличивается (х| = 0,9...0,95). Пар с параметрами состояния, характеризуемыми точкой 1, засасывается в компрессор, и работа установки повторяется.

    На практике пар после дроссельного вентиля поступает не в рефрижератор, а в испаритель, где отнимает теплоту у рассола, который, в свою очередь, отнимает теплоту от рефрижератора. Это объясняется тем, что в большинстве случаев холодильная установка обслуживает ряд потребителей холода, и тогда незамерзающий рассол служит промежуточным хладоносителем, непрерывно циркулируя между испарителем, где он охлаждается, и специальными воздухоохладителями в рефрижераторах. В качестве рассолов применяют водные растворы хлорида натрия и хлорида кальция, имеющие достаточно низкие температуры замерзания. Растворы пригодны для использования лишь при температурах, превышающих те, при которых они замерзают как однородная смесь, образуя соленый лед (так называемая криогидратная точка). Криогидратной точке для раствора NaCl с массовой концентрацией 22,4 % соответствует температура -21,2 "С, а для раствора СаС1 2 с концентрацией 29,9 - температура -55 °С.

    Показателем энергетической эффективности холодильных установок служит холодильный коэффициент е, представляющий собой отношение удельной холодопроизводительности к затраченной энергии.

    Действительный цикл парокомпрессорной холодильной установки отличается от теоретического тем, что из-за наличия внутренних потерь на трение сжатие в компрессоре происходит не по адиабате, а по политропе. В результате уменьшается затрата энергии в компрессоре и снижается холодильный коэффициент.

    Для получения низких температур (-40...70 °С), требуемых в некоторых технологических процессах, одноступенчатые парокомпрессорные установки оказываются или неэкономичными, или совершенно непригодными из-за снижения КПД компрессора, обусловленного высокими температурами рабочего тела в конце процесса сжатия. В таких случаях применяют или специальные холодильные циклы, или в большинстве случаев двухступенчатое или многоступенчатое сжатие. Например, двухступенчатым сжатием аммиачных паров получают температуры до -50 °С, а трехступенчатым - до -70 °С.

    Основное преимущество абсорбционных холодильных установок по сравнению с компрессорными - использование для выработки холода не электрической, а тепловой энергии низкого и среднего потенциалов. Последнюю можно получить от водяного пара, отбираемого, например, из турбины на теплоэлектроцентралях.

    Абсорбцией называется явление поглощения пара жидким веществом (абсорбентом). При этом температура пара может быть ниже температуры абсорбента, поглощающего пар. Для процесса абсорбции необходимо, чтобы концентрация абсорбируемого пара была равна или больше равновесной концентрации этого пара над абсорбентом. Естественно, что в абсорбционных холодильных установках жидкие абсорбенты должны с достаточной скоростью поглощать холодильный агент, и при одинаковых давлениях температура их кипения должна быть значительно выше температуры кипения холодильного агента.

    Наиболее распространены водно-аммиачные абсорбционные установки, в которых аммиак служит холодильным агентом, а вода - абсорбентом. Аммиак хорошо растворим в воде. Например, при 0 °С в одном объеме воды растворяется до 1148 объемов парообразного аммиака, и при этом выделяется теплота около 1220 кДж/кг.

    Холод в абсорбционной установке вырабатывается по схеме, изображенной на рисунке 8.16. На этой схеме нанесены примерные значения параметров рабочего тела в установке без учета потерь давления в трубопроводах и потерь температурного напора в конденсаторе.

    В генераторе 1 происходит выпаривание насыщенного аммиачного раствора при подогреве его водяным паром. В результате этого отгоняется легкокипящий компонент - аммиачный пар с незначительной примесью паров воды. Если поддерживать температуру раствора около 20 “С, то давление насыщения паров аммиака составит примерно 0,88 МПа. Чтобы содержание NH 3 в растворе не уменьшилось, с помощью перекачивающего насоса 10 из абсорбера в генератор непрерывно подается крепкий концентриро-


    Рис. 8.16.

    /-генератор; 2- конденсатор; 3 - дроссельный вентиль; 4- испаритель; 5-насос; б-перепускной вентиль; 7- охлаждаемая емкость; абсорбер; 9-змеевик; 10- насос

    ванный аммиачный раствор. Насыщенный аммиачный пар (х= 1), получаемый в генераторе, направляется в конденсатор 2, где аммиак превращается в жидкость (х = 0). После дросселя 3 аммиак поступает в испаритель 4, при этом давление его снижается до 0,3 МПа (/ н = -10 °С) и степень сухости становится равной примерно 0,2.„0,3. В испарителе аммиачный раствор выпаривается за счет теплоты, подводимой рассолом из охлаждаемой емкости 7. При этом температура рассола понижается от -5 до -8 °С. С помощью насоса 5 он обратно перегоняется в емкость 7, где вновь нагревается до -5 °С, отбирая теплоту от помещения и поддерживая в нем постоянную температуру, примерно -2 °С. Выпаренный в испарителе аммиак со степенью сухости х= 1 поступает в абсорбер 8, где поглощается слабым раствором, подаваемым через перепускной вентиль 6 из генератора. Поскольку абсорбция - экзотермическая реакция, то для обеспечения непрерывности процесса теплообмена абсорбцит отводят охлаждающей водой. Полученный в абсорбере крепкий аммиачный раствор насос 10 перекачивает в генератор.

    Таким образом, в рассмотренной установке имеются два аппарата (генератор и испаритель), где теплота подводится к рабочему телу извне, и два аппарата (конденсатор и абсорбер), в которых теплота отводится от рабочего тела. Сравнивая принципиальные схемы парокомпрессорной и абсорбционной установок, можно отметить, что генератор в абсорбционной установке заменяет нагнетательную, а абсорбер - всасывающую части поршневого компрессора. Сжатие холодильного агента происходит без затраты механической энергии, если не считать небольших расходов на перекачивание крепкого раствора из абсорбера в генератор.

    В практических расчетах в качестве энергетического показателя абсорбционной установки также принимают холодильный коэффициент е, представляющий собой отношение количества теплоты q 2 воспринимаемого рабочим телом в испарителе к количеству теплоты q u затрачиваемому в генераторе. Подсчитанный таким образом холодильный коэффициент всегда меньше холодильного коэффициента парокомпрессорной установки. Однако сравнительная оценка энергетической эффективности рассмотренных способов получения холода в результате непосредственного сопоставления способов только холодильных коэффициентов абсорбционной и парокомпрессорной установок неправильна, так как она определяется не только количеством, но и видом затраченной энергии. Два метода получения холода следует сравнивать по значению приведенного холодильного коэффициента, представляющему собой отношение холодопроизводительности q 2 к расходу теплоты топлива q it т. е. ? пр = Яг Я- Оказывается, что при температурах испарения от -15 до -20 °С (используемых основной массой потребителей) е пр абсорбционных установок выше, чем парокомпрессорных, вследствие чего в ряде случаев абсорбционные установки выгоднее не только при снабжении их паром, отбираемым из турбин, но и при снабжении их паром непосредственно из паровых котлов.

    Системы автоматизации . Автоматизация работы холодильных машин в зависимости от выполняемых функций подразделяется на системы:

    регулирования , поддерживающие заданное значение регулируемой величины (температуры, давления, количества хладагента и др.);

    защиты, т.е для выключения установки при чрезмерном отклонении параметров режима её работы;

    сигнализации , т.е. для включения визуального или (и) звукового сигнала при нарушении режима работы холодильной установки;

    контроля , когда необходимо контролировать какие-либо режимные параметры работы холодильной машины.

    В зависимости от привод в действие системы автоматизации бывают электрические , пневматические и комбинированные , а по принципу действия - позиционные и непрерывные .

    Система автоматического регулирования холодильной установки позволяет обеспечить заданный температурный режим для перевозимого груза без участия обслуживающего персонала.

    Системой автоматизации называют совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой этого объекта без участия персонала. Объектом автоматизации могут быть холодильная установка в целом либо отдельные её агрегаты, узлы, аппараты и т.д. Системы автоматизации могут быть замкнутыми и разомкнутыми.

    Рис. 4.26 - Замкнутая система автоматизации

    Замкнутая система состоит из объекта (Об ) и автоматического устройства (А ), которые соединены между собой прямой (ПС ) и обратной (ОС ) связями, которые показаны на рис. 4.26. По прямой связи к объекту подводится входное воздействие х , по обратной - выходная величина у , которые воздействуют на А . Система ОС работает по отклонению фактической величины у от заданного значения у з.

    Если назначение системы - поддерживать величину у около заданного значения при изменениях внешнего воздействия f вн, то такую систему называют системой автоматического регулирования (САР ), а автоматическое устройство - автоматическим регулятором (АР ). Функциональная система САР показана на рис. 4.27.



    Рис. 4.27 - Функциональная схема системы автоматического
    регулирования (САР)

    На функциональной схеме САР в цепь прямой связи входят: усилитель , исполнительный механизм (ИМ ) и регулирующий орган (РО ). В цепь обратной связи включён датчик , с помощью которого регулятор АР воспринимает регулируемую величину У и преобразует её в величину У п, удобную для дальнейшей передачи. На один из входов элемента сравнения (ЭС ) подаётся преобразованная величина У п, а на другой его вход - сигнал У з от задатчика .

    Этот сигнал в преобразованном виде представляет собой задание регулятору. Величина согласования d = У з – У п является побуждающим сигналом. Мощность его увеличивается в усилителе подводом внешней энергии Э вн и в виде сигнала D воздействует на ИМ , который преобразует сигнал в удобный для использования вид энергии D х и переставляет в РО . В результате изменяется подводимый к Об поток энергии, что соответствует изменению регулирующего воздействия х .

    Если нормальная работа объекта протекает при значениях у , отличающихся от у з, а при достижении равенства между ними в объект посылается сигнал х на отключение, то такую систему называют системой автоматической защиты (САЗ ), а автоматическое устройство - устройством защиты (АЗ ). Такая функциональная система показана на рис. 4.28.

    Схема САЗ отличается от схемы САР тем, что в автоматическом устройстве АЗ отсутствуют ИМ и РО . Сигнал от усилителя воздействует непосредственно на Об , выключая его целиком или отдельные его части.

    Рис. 4.28 - Функциональная схема системы автоматической защиты (САЗ)

    Рис. 4.29 - Разомкнутая система автоматизации

    Разомкнутой системой называют систему, в которой одна из связей (обратная или прямая) отсутствует (рис. 4.29). Параметр Z связан с выходной величиной у и воспринимается автоматическим устройством А . Отклонение от заданного значения Z 3 вызывает изменения воздействия х .

    Автоматизация работы испарителей . Одним из важных процессов управления холодильной машиной является автоматическое питание испарителей по перегреву пара и по уровню жидкости в испарителе. В качестве автоматического регулятора перегрева в основном применяют терморегулирующие вентили (ТРВ).

    ТРВ установлен перед испарителем. В верхней части вентиля (рис. 4.30) припаяна капиллярная трубка 7 , соединяющая внутреннюю рабочую часть 6 вентиля с термобаллоном 8 . Верхняя силовая часть вентиля герметична. Термобаллон плотно прикреплён к всасывающему трубопроводу, соединяющему испаритель с компрессором. Термобаллон, капилляр и пространство над мембраной при изготовлении вентиля заполняют строго дозированным количеством хладона. От донышка мембраны 5 вниз идёт шток 4 с запорным клапаном 3 , который прижимается к седлу пружиной 2 с регулировочным винтом 1 .

    Рис. 4.30 - Схема терморегулирующего вентиля с внутренним уравниванием

    Принцип действия ТРВ основан на сравнении температуры кипения хладагента в испарителе с температурой выходящих из него паров. Сравнение производится преобразованием воспринимаемой термобаллоном температуры паров t в в соответствующее давление р с в силовой части прибора (см. рис. 4.30). Давление действует на мембрану сверху и стремится через шток открыть клапан 3 на большее проходное сечение. Такому перемещению клапана препятствует давление кипения хладона в испарителе р о, действующее на мембрану снизу, а также усилие пружины f и давление р к на клапан.

    При правильном заполнении испарителя температура паров на выходе из него не должна превышать 4,7°С. Для этого весь хладон, поданный через ТРВ в испаритель, должен выкипеть на участке от клапана 3 до точки А. Здесь температура хладона не изменяется и составляет t о. В последних витках испарителя от точки А до термобаллона хладон, продолжая воспринимать тепло от охлаждаемого помещения, перегревается до температуры t в > t о. Температуру t в воспринимает термобаллон, и в силовой системе устанавливается давление р с. При равновесии р с = р о + f + р к происходит допустимо полное заполнение испарит5еля хладоном, и холодильная машина работает в оптимальном режиме.

    С понижением температуры в охлаждаемом помещении теплопритоки к испарителю уменьшаются. Кипение хладагента в точке А не заканчивается, а продолжается до точки Б. Путь парообразного хладагента до термобаллона сокращается, и перегрев паров уменьшается. Термобаллон воспринимает более низкую температуру, и в силовой системе устанавливается меньшее значение р с. Под действием пружины клапан перемещается вверх, уменьшая проходное сечение вентиля и тем самым подачу хладагента в испаритель.

    При меньшем количестве хладагента кипение его в испарителе заканчивается раньше, и перегрев принимает значение, близкое к первоначальному. Перемещение клапана вверх происходит до установления нового равновесия между снизившимся давлением и уменьшившимся сжатием пружины, т.е. р с = р о + f + р к. Перегрев паров в испарителе регулируют поджатием пружины 2 с помощью регулировочного винта 1 .

    Термобаллон 8 , капилляр 7 и мембрана 5 (см. рис. 4.30) являются основными элементами манометрических приборов-термостатов , которые применяются для автоматического регулирования работы дизель-генераторных и холодильных агрегатов на рефрижераторном подвижном составе.

    Автоматическое поддержание температурного режима в грузовых помещениях. Для установления необходимого температурного режима в грузовом помещении рефрижераторного транспортного или складского модуля и автоматического поддержания его в заданных пределах служит прессостат-терморегулятор , устройство которого показано на рис. 4. 31.

    Рис. 4.31 - Устройство прессостата

    Прессостат устанавливают на всасывающем трубопроводе между испарителем и компрессором. Он состоит из поршня 1 , жёстко связанного с ним штока 2 , пружины 4 , рукоятки 5 , двух электрических контактов: подвижного 6 и неподвижного 7 .

    Поршень находится в колене 3 , соединённом со всасывающим трубопроводом 8 . При давлении р о, большем чем сила закручивания пружины 4 , поршень находится в крайнем верхнем положении. При этом контакты 6 и 7 замкнуты. Компрессор включён и отсасывает пары хладона из испарителя. В процессе отсасывания паров давление р о понижается, становится меньше, чем сила закручивания пружины. Поршень с подвижным контактом перемещается в крайнее нижнее положение, и компрессор выключается.

    Вследствие продолжающегося кипения хладона в испарителе его удельный объём увеличивается, давление р о снова начнёт расти. Контакты 6 и 7 замкнутся, компрессор начнёт отсасывать пары хладона из испарителя. Цикл повторяется.

    Ход поршня ограничивается специальными упорами, которые могут регулироваться. Сила воздействия пружины на поршень регулируется рукояткой 5 . При установке рукоятки в положение «холод» сила закручивания пружины уменьшается. Следовательно, в зоне испарителя установится меньшее давление р о, а значит и низкая температура кипения хладона.

    Таким образом прессостат-терморегулятор поддерживает на требуемом уровне давление кипения в испарителе путём управления количеством хладагента, направляющегося в испаритель.

    Введение……………………………………………………………………………..

    1 Описание технологического процесса …………………………………………......

    1.1 Автоматизация холодильных компрессорных станций………………………….

    1.2 Анализ возмущающих воздействий объекта автоматизации…………………...

    1.3 Схема холодильного цикла………………………………………………………..

    2 Разработка функциональной схемы холодильной установки…………………….

    2.1 Методика разработки схемы………………………………………………………

    2.2 Функциональная схема автоматизации холодильного модуля……………….. .

    2.3 Работа узлов функциональной схемы автоматизации холодильного модуля….

    2.3.1 Узел автоматической защиты компрессоров…………………………………..

    2.3.2 Узел автоматического включения резервного водяного насоса………………

    2.3.3 Узел оттаивания воздухоохладителей…………………………………………..

    3 Выбор технических средств холодильной установки………………......................

    3.1 Выбор и обоснование выбора приборов и средств автоматизации……………..

    Заключение……………………………………………………………………………

    Список литературы……………………………………………………………………

    ВВЕДЕНИЕ

    Автоматизированные системы управления и регулирования являются неотъемлемой частью технологического оснащения современного производства, способствуют повышению и качества продукции и улучшают экономические показатели производства за счет выбора и поддержания оптимальных технологических режимов.

    Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

    По уровню автоматизации компрессорные холодильные установки занимает одно из ведущих мест среди других отраслей промышленности. Холодильные установки характеризуются непрерывностью протекающих в них процессов. При этом выработка холода в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на холодильных установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в охладительной технике.

    Автоматизация параметров дает значительные преимущества:

    Обеспечивает уменьшение численности рабочего персонала, т. е. повышение производительности его труда,

    Приводит к изменению характера труда обслуживающего персонала,

    Увеличивает точность поддержания параметров вырабатываемого холода,

    Повышает безопасность труда и надежность работы оборудования,

    устройства управления

    Цель автоматизации холодильных машин и установок - это повышения экономической эффективности их работы и обеспечение безопасности людей (в первую очередь обслуживающего персонала).

    Экономическая эффективность работы холодильной машины обеспечивается уменьшением эксплуатационных расходов и сокращением затрат на ремонт оборудования.

    Автоматизация уменьшает количество обслуживающего персонала и обеспечивает работу машины в оптимальном режиме.

    Безопасность работы холодильного оборудования обеспечивается применением автоматических устройств, защищающих оборудование от опасных режимов работы.

    По степени автоматизации холодильные машины и установки делятся на 3 группы:

    1 Холодильное оборудование с ручным управлением.

    2 Частично автоматизированное холодильное оборудование.

    3 Полностью автоматизированное холодильное оборудование.

    Оборудование с ручным управлением и частично автоматизированные машины работают с постоянным присутствием обслуживающего персонала.

    Полностью автоматизированное оборудование не требует постоянного присутствия обслуживающего персонала, но не исключает необходимости периодических контрольных осмотров и проверок по установленному регламенту.

    Автоматизированная холодильная установка должна содержать одну или несколько систем автоматизации, каждая из которых выполняет определенные функции. Кроме того, существуют устройства объединяющие (синхронизирующие) работу этих систем.

    Система автоматизации - это совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой автоматизации без участия обслуживающего персонала.

    Объектом курсового проекта является холодильная установка в комплексе, отдельные ее элементы.

    Целью данного курсового проекта является описание технологического процесса холодильного оборудования, разработка функциональной схемы данной установки и выбор технических средств автоматизации.

    1 ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

    1.1 Автоматизация холодильных компрессорных станций

    Искусственный холод находит широкое применение в пищевой промышленности, в частности при консервировании скоропортящихся продуктов. При охлаждении обеспечивается высокое качество хранимых и выпускаемых продуктов.

    Искусственное охлаждение может осуществляться периодически и непрерывно. Периодическое охлаждение происходит при плавлении льда либо при сублимации твердого диоксида углерода (сухого льда). Этот способ охлаждения обладает большим недостатком, так как в процессе плавления и сублимации хладагент теряет свои охлаждающие свойства; при длительном хранении продуктов трудно обеспечить определенную температуру и влажность воздуха в холодильной камере.

    В пищевой промышленности широко распространено непрерывное охлаждение с применением холодильных установок, где хладагент - сжиженный газ (аммиак, фреон и др.) - совершает круговой процесс, при котором он после осуществления холодильного эффекта восстанавливает свое первоначальное состояние.

    Применяемые хладагенты кипят при определенном давлении, зависящем от температуры. Следовательно, изменяя давление в сосуде, можно изменять температуру хладагента, а следовательно, и температуру в холодильной камере. Компрессор / всасывает пары аммиака из испарителя II, сжимает их и через маслоотделитель III нагнетает в конденсатор IV. В конденсаторе пары аммиака конденсируются за счет охлаждающей воды, и жидкий аммиак из конденсатора, охлажденный в линейном ресивере V, через регулирующий вентиль VI поступает в испаритель II, где, испаряясь, охлаждает промежуточный хладоно-ситель (рассол, ледяную воду), нагнетаемый к потребителям холода насосом VII.

    Регулирующий вентиль VI служит для дросселирования жидкого аммиака, температура которого при этом снижается. Система автоматизации предусматривает автоматическое управление работой компрессора и противоаварийные защиты. Командой на автоматический пуск компрессора служит повышение температуры рассола (ледяной воды) на выходе из испарителя. Для управления температурой используется регулятор температуры типа, датчик которого устанавливается на трубопроводе выхода рассола (ледяной воды)

    из испарителя.

    При работе компрессора в автоматическом режиме функционируют следующие противоаварийные защиты: от понижения разности давлений масла в системе смазки и картере - применяется датчик-реле разности давлений; от понижения давления всасывания и повышения давления нагнетания - применяется датчик-реле давления; от повышения температуры нагнетания - применяется датчик-реле температуры; от отсутствия протока воды через охлаждающие рубашки - применяется реле протока; от аварийного повышения уровня жидкого аммиака в испарителе - применяется полупроводниковое реле уровня.

    При пуске компрессора в автоматическом режиме открывается вентиль с электромагнитным приводом на подаче воды в охлаждающие рубашки и закрывается вентиль на байпасе.

    Автоматическое регулирование уровня жидкого аммиака в испарителе осуществляется полупроводниковыми реле уровня, управляющим вентилем с электромагнитным приводом, установленным на подаче жидкого аммиака в испаритель.

    Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере осуществляется полупроводниковыми реле уровня.

    Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления.

    Дистанционный контроль температуры воздуха, аммиака, рассола, воды в контрольных точках холодильной установки осуществляется термопреобразователями.

    Аппаратура контроля, управления и сигнализации остального технологического оборудования размещена в панелях щита управления.

    1.2 Анализ возмущающих воздействий объекта автоматизации

    В данной схеме предусмотрены контроль, регулирование, управления и сигнализация параметров технологического процесса.

    Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере, в котором контролируется уровень от которого зависит наполнение ресивера.

    Также контролю подлежит температура воздуха в холодильной установке от которой зависит охлаждение и количество вырабатываемого холода.

    Контроль давления холодного рассола в нагнетательном трубопроводе, который зависит от нагнетания насосом, насос воздействуя на холодный рассол изменяет его подачу.

    Также контролируется температура холодной воды поступающей из бассейна в конденсатор которая необходима для конденсирования (охлаждения) паров аммиака.

    На выходе из конденсатора контролируется температура жидкого аммиака, который поступает в линейный ресивер.

    Регулирующий вентиль VI установленный на трубопроводе служит для дросселирования жидкого аммиака, за счет чего температура при этом снижается.

    Повышение температура рассола (ледяной воды) на выходе из испарителя управляет работой компрессора и служит командой на автоматический пуск компрессора.

    На трубопроводе от ресивера установлен вентиль с электромагнитным приводом, воздействуя на который регулируется подача жидкого аммиака в испаритель.

    При отсутствии протока воды через охлаждающие рубашки или давления воды ниже установленного предела, отключается компрессор.

    На подаче воды в охлаждающие рубашки, на трубопроводе установлен вентиль с электромагнитным приводом, воздействуя на который при пуске компрессора в автоматическом режиме изменяет его положение в открытое состояние, а при этом закрывается вентиль 6 на байпасе.

    От аварийного повышения уровня жидкого аммиака в испарителе установлены датчики температуры, следящие за верхним уровнем. Через вентиль установленный па трубопроводе от ресивера регулируется уровень жидкого аммиака в испарителе.

    1.3 Схема холодильного цикла

    Холодильный цикл в основном идентичен с другими нормальными технологиями. Наиболее важное отличие - добавочное трубное подсоединение от жидкостной линии к импульсному клапану впрыска на компрессоре. Чтобы обеспечить доступ кипящей свободной жидкости, трубопроводы следует устанавливать на горизонтальной секции жидкостной линии и прежде всего направлять вниз. Фильтр должен быть установлен для защиты импульсного клапана впрыска и компрессора; смотровое стекло дает возможность визуальной проверки жидкостного снабжения. Размеры жидкостной линии к импульсному клапану впрыска: 10 мм (3/8”). Конструкция и управление цикла имеет важное влияние от цикла впрыска и поэтому от полной производительности изделия. Перегрев всасываемого газа и разницу между давлением конденсации и всасывания следует сохранять как можно меньше (необходимо устанавливать минимальный перегрев).

    Хорошая изоляция линии всасывания/ короткие прогоны труб;

    Отказ от теплообменников (когда возможно);

    Низкое давление падения в трубах и составляющих;

    Малая температурная разница испарителя и конденсатора;

    Контроль давления конденсации.

    На рисунке 1 представлена схема цикла одноступенчатого поршневого компрессора с CIC-системой.


    Рисунок 1 - Схема цикла одноступенчатого поршневого компрессора с CIC-системой.

    1Компрессор.

    2Модуль управления.

    3Температурный сенсор.

    4 Сопло впрыска.

    5 Импульсный клапан впрыска.

    6 Добавочный вентилятор.

    7 Смотровое стекло.

    9 Конденсатор.

    10 Жидкостной ресивер.

    11 Вентиль расширительный (испаритель).

    12 Испаритель.

    2 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ ХОЛОДИЛЬНОЙ

    УСТАНОВКИ

    2.1 Методика разработки схемы

    Схемы автоматизации являются основным техническим документом, определяющим функционально-блочную структуру отдельных узлов автоматического контроля, управления и регулирования технологического процесса и оснащение объекта управления приборами и средствами автоматизации (в том числе средствами телемеханики и вычислительной техники).

    Объектом управления в системах автоматизации технологических процессов является совокупность основного и вспомогательного оборудования вместе с встроенными в пего запорными и регулирующими органами, а также энергии, сырья и других материалов, определяемых особенностями используемой технологии.

    Задачи автоматизации решаются наиболее эффективно тогда, когда они прорабатываются в процессе разработки технологического процесса.

    В этот период нередко выявляется необходимость изменения технологических схем с целью приспособления их к требованиям автоматизации, установленным па основании технико-экономического анализа.

    Создание эффективных систем автоматизации предопределяет необходимость глубокого изучения технологического процесса не только проектировщиками, но и специалистами монтажных, наладочных и эксплуатационных организаций. При разработке схем автоматизации технологических процессов необходимо решить следующее:

    Получение первичной информации о состоянии технологического процесса оборудования;

    Непосредственное воздействие на технологический процесс для управления;

    Стабилизация технологических параметров процесса;

    Контроль и регистрация технологических параметров процессов и состояния

    технологического оборудования;

    Указанные задачи решаются на основании анализа условий работы технологического оборудования, выявленных законов и критериев управления объектом, а также требований, предъявляемых к точности стабилизации, контроля и регистрации технологических параметров, к качеству регулирования и надежности.

    Задачи автоматизации, как правило, реализуются с помощью технических средств, включающих в себя: отборные устройства, средства получения первичной информации, средства преобразования и переработки информации, средства представления и выдачи информации обслуживающему персоналу, комбинированные, комплектные и вспомогательные устройства. Результатом составления схем автоматизации являются:

    1 Выбор методов измерения технологических параметров;

    2 Выбор основных технических средств автоматизации, наиболее полно отвечающих предъявляемым требованиям и условиям работы автоматизируемого объекта;

    3 Определение приводов исполнительных механизмов регулирующих и запорных органов технологического оборудования, управляемою автоматически или дистанционно;

    4 Размещение средств автоматизации на щитах, пультах, технологическом оборудовании и трубопроводах и т. п. и определение способов представления информации о состоянии технологического процесса и оборудования.

    Современное развитие всех отраслей промышленности характеризуется большим разнообразием используемых в них технологических процессов.

    Технологическое оборудование и коммуникации при разработке схем автоматизации должны изображаться, как правило, упрощенно, без указания отдельных технологических аппаратов и трубопроводов вспомогательного назначения. Однако изображенная таким образом технологическая схема должна давать ясное представление о принципе ее работы и взаимодействии со средствами автоматизации.

    Всем приборам и средствам автоматизации, изображенным на схемах автоматизации, присваиваются позиционные обозначения (позиции), сохраняющиеся во всех материалах проекта.

    Обозначения на схемах автоматизации электроаппаратуры на стадии рабочей документации или при одностадийном проектировании должны соответствовать обозначениям, принятым в принципиальных электрических схемах.

    При определении границ каждой функциональной группы следует учитывать следующее обстоятельство: если какой-либо прибор или регулятор связан с несколькими датчиками или получает дополнительные воздействия под другим параметром (например, корректирующий сигнал), то все элементы схемы, осуществляющие дополнительные функции, относятся к той функциональной группе, на которую они оказывают воздействие.

    Регулятор соотношения, в частности, входит в состав той функциональной группы, на которую оказывается ведущее воздействие по независимому параметру.

    Схема автоматизации выполняется в виде чертежа, на котором схематически условными изображениями показывают: технологическое оборудование, коммуникации, органы управления и средства автоматизации с указанием связей между технологическим оборудованием и средствами автоматизации, а также связей между отдельными функциональными блоками и элементами автоматики.

    Схемы автоматизации могут разрабатываться с большей или меньшей степенью детализации. Однако объем информации, представленный на схеме, должен обеспечить полное представление о принятых основных решениях по автоматизации данного технологического процесса и возможность составления на стадии проекта заявочных ведомостей приборов и средств автоматизации, трубопроводной арматуры, щитов и пультов, основных монтажных материалов и изделий, а на стадии рабочего проекта - всего комплекса проектных материалов, предусмотренных в составе проекта.

    Схему автоматизации выполняют, как правило, на одном листе, на котором изображают средства автоматизации и аппаратуру всех систем контроля, регулирования, управления и сигнализации, относящуюся к данной технологической установке. Вспомогательные устройства, такие как редукторы и фильтры для воздуха, источники питания, реле, автоматы, выключатели и предохранители в цепях питания, соединительные коробки и другие устройства и монтажные элементы, на схемах автоматизации не показывают.

    Схемы автоматизации могут быть выполнены двумя способами: с условным изображением щитов и пультов управления в виде прямоугольников (как правило, в нижней части чертежа), в которых показываются устанавливаемые на них средства автоматизации; с изображением средств автоматизации на технологических схемах вблизи отборных и приемных устройств, без построения прямоугольников, условно изображающих щиты, пульты, пункты контроля и управления.

    При выполнении схем по первому способу на них показываются все приборы и средства автоматизации, входящие в состав функционального блока или группы, и место их установки. Преимуществом этого способа является большая наглядность, в значительной степени облегчающая чтение схемы и работу с проектными материалами.

    При построении схем по второму способу, хотя он и дает только общее представление о принятых решениях по автоматизации объекта, достигается сокращение объема документации. Чтение схем автоматизации, выполненных таким образом, затруднено, не отображают организацию пунктов контроля и управления объектом.

    При развернутом изображении на схемах показывают: отборные устройства, датчики, преобразователи, вторичные приборы, исполнительные механизмы, регулирующие и запорные органы, аппаратуру управления и сигнализации, комплектные устройства (машины централизованного контроля, телемеханические устройства) и т. д.

    При упрошенном изображении на схемах показывают: отборные устройства, измерительные и регулирующие приборы, исполнительные механизмы и регулирующие органы. Для изображения промежуточных устройств (вторичных приборов, преобразователей, аппаратуры управления и сигнализации и т. п.) используются общие обозначения в соответствии с действующими стандартами на условные обозначения в схемах автоматизации.

    Комбинированное изображение предполагает показ средств автоматизации в основном развернуто, однако некоторые узлы изображают упрощенно.

    Приборы и средства автоматизации, встраиваемые в технологическое оборудование и коммуникации или механически связанные с ними, изображают на чертеже в непосредственной близости от них. К таким средствам автоматизации относятся: отборные устройства давления, уровня, состава вещества, датчики, воспринимающие воздействие измеряемых и регулирующих величин (измерительные сужающие устройства, ротаметры, счетчики, термометры расширения и т. п.), исполнительные механизмы, регулирующие и запорные органы.

    2.2 Функциональная схема автоматизации холодильного модуля

    Холодильная автоматизированная установка состоит из двух компрессоров (КМ), оснащенных устройствами автоматической защиты, двух маслоотделителей (МО), сборника масла (МС), форконденсатора(ФКД), конденсатора(КД) c вентиляторами, линейного ресивера (РЛ) с двумя датчиками уровня, двух воздухоохладителей (ВО), установленных в камере и оснащенных вентиляторами, регуляторами заполнения и соленоидными вентилями (СВ), отделитель жидкости (ОЖ) с двумя датчиками уровня, дренажного ресивера (РД) с датчиком нижнего уровня и СВ, двух водяных насосов.

    После загрузки яблоками холодильной камеры предварительно в работу в ручном режиме включают два КМ (мощность привода КМ 5,5 кВт), то есть КМ №1 и КМ №2. Этим обеспечивается большая скорость охлаждения яблок. Выход на нормальный режим работы осуществляется примерно за 10 суток

    В пусковом режиме схема работает таким образом. Перед включением КМ СВ YА3 и YА7 на линиях подачи жидкости ВО и YА2, YА1 на линиях подачи пара дистанционно открываются. Также открываются СВ YА10 и YА11, которые соединяют ОЖ с РД и СВ YА13 на общей линии подачи жидкого аммиака в ВО №1 и №2. Остальные СВ (YА1,YА4,YА5,YА8,YА9,YА12) закрыты. Потом происходит включение вентиляторов ВО и КД и насосов КМ №1 и №2.

    КМ откачивают пар из ОЖ. При этом ОЖ через СВ YА10 (уравнительная паровая линия) и вентиль YА11 (уравнительная жидкостная линия) соединен с РД. В данном случае РД выполняет роль ОЖ, то есть жидкость в ОЖ не накопляется.

    Пар КМ сжимается и через ОМ №1 и №2 подается в ФКД и далее в КД. Сконденсированный аммиак поступает в РЛ. Далее жидкость из РЛ через СВ YА13 параллельно подается в ВО №1 и №2 через соответственно СВ YА3 и YА7. Последовательно с этими СВ смонтированы регулирующие вентили (РВ) №1 и №2, в которых происходит дросселирование агента до определенного давления, при котором аммиак начинает кипеть. Пар из ВО №1 и №2 через СВ YА2 и YА6 поступает в ОЖ, а из него выкачивается КМ №1 и №2 (цикл замкнулся).

    Благодаря кипению агента при отрицательной температуре в ВО №1 и №2 осуществляется поглощение тепла камеры и температура в ней постепенно уменьшается.

    После выхода установки на нормальный режим работы один КМ отключают и далее в работе находится только один КМ и один ВО. Их задача поддерживать температуру в камере в диапазоне 0¼1°C, то есть компенсировать проникновение тепла через теплоизоляционную конструкцию камеры.

    Оттаивание ВО должно проводится приблизительно один раз в сутки. При этом один ВО должен оттаивать а другой находится в работе, в пусковой период оттаивание осуществляется вручную, а в режиме хранения – автоматически. Оттаивание проводится горячими парами аммиака с линии нагнетания КМ, который подается в ВО находящееся в оттайке. В процессе оттайки, который продолжается приблизительно от 20 до 30 минут, работает только один КМ. КМ №1 работает с ВО №1, а КМ №2 с ВО №2.

    В процессе оттайки любого ВО ОЖ отключается от РД СВ YА10 и YА11. При этом СВ YА10,YА11,YА13 должны быть закрытыми. Жидкий аммиак в данном случае накопляется в РЛ. Если при отрицательных температурах окружающей среды и отключенных компрессорах температура в камере понижается ниже допустимой, то в данном случае включаются электронагреватели, которые встроены в ВО. Включением и выключением поддерживают заданную температуру в камере.

    2.3 Работа узлов функциональной схемы автоматизации холодильного

    Основной регулируемой величиной в данной схеме есть температура воздуха в холодильной камере. Ее регулируют включением и выключением КМ, а зимой возможно ее поддержание включением и выключением электронагревателей ВО №1 и ВО №2.

    Для управления каждым КМ спроектирован малогабаритный пульт автоматического управления типа ПАК (выпускается «Пищепромавтоматика «, г. Одесса). КМ оснащены стандартными приборами автоматической защиты от аварийных режимов работы.

    Заполнение ВО регулируется автоматически по перегреву пара. Оттаивание ВО проводится горячим паром аммиака по времени.

    Предусмотрено следующее блокирование: Включение КМ возможно только после включения водяного насоса и вентилятора КД; После выключения КМ №1 (№2) СВ на линии подачи жидкости в ВО №1 (№2) должен быть закрыт.

    По уровню жидкого аммиака в ОЖ проводится аварийное выключение КМ. В РД контролируют и сигнализируют нижний уровень жидкости, а в РЛ нижний и верхний уровни.

    2.3.1 Узел автоматической защиты компрессоров

    Как уже отмечалось, для каждого КМ спроектирован стандартный пульт управления типа ПАК. Этот пульт обеспечивает автоматическое управление и защиту КМ от аварийных режимов работы. На фасаде пульта расположены ключ выбора режима КМ, кнопки, лампа (многоцифровая) сигнализации. К пульту управления присоединяются контакты камерного термореле, а также контакты приборов защиты: реле контроля системы смазки (РКСС) 4а (13а); двухблочное реле давления(ДРД) 5а (14а); реле контроля температуры нагнетания (РТ) 3а (12а) – планируется использовать разработанное в институте «Агрохолод» ЭРТ; реле протока воды (РП) 6а (15а); реле уровня (РУ) 25б, 26б у ОЖ – разработка «Агрохолод».

    Срабатывание какого-либо из перечисленных приборов автоматической защиты отключает КМ и при этом включается сигнальная лампа, в которой высвечивается соответствующая цифра, которая показывает по какой причине выключается КМ. Так как ХМ работает в автоматическом режиме, то при аварийной остановке КМ на щитке вахтера включается сигнальная лампа. По этому сигналу вахтер вызывает машиниста, который устраняет причину аварии и включает КМ.

    Приборы автоматической защиты работают таким образом. РКСС срабатывает в случае уменьшения перепада давления масла на линии нагнетания масленого насоса и в картере КМ ниже заданного значения.

    При уменьшении расхода воды через рубашку КМ, или при полном ее исчезновении срабатывает реле протока воды.

    Если температура нагнетания превосходит заданную, то срабатывает РТ нагнетания.

    ДРД контролирует давления всасывания агента и давление нагнетания. Это реле имеет два измерительных блока (два сильфона), которые через рычажную систему влияют на одну и ту же пару контактов. Если давление всасывания становится ниже допустимого, из-за чего может произойти всасывание воздуха в систему, что приведет к вспениванию масла, или давление нагнетания становится выше допустимого (это может произвести к разрушению КМ), то это реле отключает электродвигатель КМ.

    В ОЖ контролируются верхний и нижний аварийные уровни аммиака. Контакты обоих датчиков присоединены к обоим пультам ПАК потому, что ОЖ это общий сосуд для обеих КМ. Дублирование контроля уровня в ОЖ необходимо для того, чтобы избежать гидравлического удара и тем самым не допустить выхода из строя КМ. Если в процессе работы уровень в ОЖ достигнет верхнего значения, то сработает датчик 25б и выключит КМ. Заметим, что подключение РД к ОЖ значительно снижает возможность повышения уровня в ОЖ до верхнего значения.

    2.3.2 Узел автоматического включения резервного водяного насоса

    В технологической схеме предусмотрено два насоса (один рабочий, другой резервный). Схема автоматизации обеспечивает автоматическое включение резервного водяного насоса таким образом. На общей линии нагнетания водяных насосов установлен электроконтактный манометр 29 а. Если в этой точке давление нагнетания води воды падает ниже допустимого при работающем основном насосе, то электроконтактный манометр реагирует на это и дает команду на автоматическое включение резервного водяного насоса.

    2.3.3 Узел оттаивания воздухоохладителей

    Оттаивание ВО проводится по времени. Для этого в схеме автоматизации спроектированы два моторных реле времени МКП с максимальной выдержкой – 24 часа.

    Оттаивание ВО проводится по очереди с частотой один раз в сутки. Оттаивание продолжается от 20 до 30 минут.

    В пусковой период оттаивание ВО проводят вручную, а в режиме хранения – автоматически. Оттаивание проводят горячим паром аммиака, который подается в ВО с линии нагнетания КМ.

    В процессе оттаивания ВО №1 работает КМ №2, а при оттаивании ВО №2 работает КМ №1. При этом с помощью 13 – ти СВ составляют соответствующие пути движения агента. Соответствующие положения СВ в процессе ручного и автоматического оттаивания ВО одинаковы. Рассмотри м оттаивание ВО №1 и №2 вручную в пусковом режиме. Например, оттаивание ВО №1 осуществляют таким образом. Выключают КМ 31 и вентилятор №1. КМ №2, вентилятор №2 работают в пусковом режиме, также работают водяной насос и вентилятор №3 КД. С помощью универсального переключателя, который относится к ВО №1, закрывают СВ YА3 (на жидкостной линии) и YА2 (на паровой линии), YА9… YА12, а открывают YА1 и YА4.СВ ВО №2 YА7 и YА6 – открыты, а YА5 и Yа8 – закрыты. Открытый СВ YА13.

    В данном случае горячий пар с линии нагнетания КМ №2 через СВ YА1 подается в ВО №1. Жидкость, которая осталась в ВО №1, вытесняется этим паром через СВ YА4 в РД. Кроме этого, горячий пар, конденсируясь также попадает в РД в виде жидкости.

    В результате ВО №1 нагревается горячим паром аммиака и его снеговая шуба таит. Талая вода поступает в поддон, а из него отправляется в дренаж талой воды.

    После окончания оттаивания ВО №1 включают КМ №1 и вентилятор №1, СВ YА1, YА4,YА13 закрывают, а YА3 и YА2 открывают. Далее вытесняют жидкость из РД в ВО №1 и №2. Для этого открывают СВ YА9 и YА12. Через них подается пар в РД и происходит вытеснение жидкости, которое продолжается не больше одного часа. По сигналу датчика нижнего уровня 45б РД СВ YА9 и YА12 закрываются, а YА13,YА10,YА11 открываются. С этого момента начинается нормальная работа ВО №2.

    Автоматическое оттаивание ВО №1 и №2 проводят по времени. Особенность оттаивания в автоматическом режиме заключается в том, что после оттаивания (длится 20 – 30 минут), например, ВО №1 этот ВО на протяжении суток в работу не включают, а работает ВО №2. Через сутки проводят оттаивание ВО №2, который потом сутки не работает. На протяжении этих суток работает ВО №1 и т.д. Итак, в режиме хранения в работе всегда находится только один ВО и один КМ.

    3 ВЫБОР ТЕХНИЧЕСКИХ СРЕДСТВ ХОЛОДИЛЬНОЙ УСТАНОВКИ

    3.1 Выбор и обоснование выбора приборов и средств автоматизации

    На компрессоре установлен датчик-реле разности давлений типа РКС-ОМ5 (1) предназначен для контроля сигнализации и двухпозиционного регулирования разности давлений в системах смазки холодильных агрегатов в подвижных и стационарных установках и автоматизации технологических процессов. Контролируемые среды: хладоны, воздух, вода, масло; аммиак для датчика РКС-ОМ5А. Приборы выпускаются с зоной нечувствительности направленной в сторону повышения разности давлений относительно уставки. Установка предела срабатывания производится по шкале с помощью винта настройки. Выходное устройство имеет один переключающий контакт. Разрывная мощность контактов при напряжении 220 В не более 300 В -А для переменного тока и 60 Вт для постоянного.

    Приборы указанного типа рассчитаны на работу при температуре окружающего воздуха от -50 до +65 °С а датчик РКС-ОМ5А при температуре от -30 до +65 °С и относительной влажности до 98 %.

    Габаритные размеры 66x104x268 мм. масса не более 1,6 кг.

    Исполнение обыкновенное, экспортное тропическое.

    Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления Д220А (11), от понижения давления всасывания и повышения давления нагнетания - применяется датчик-реле давления Д220А (2)

    Датчики-реле давления сдвоенные типа Д220 (2, 11) имеют датчик низкого давления (ДНД) и датчик высокого давления (ДВД), действующие с помощью системы рычагов на одно общее коммутационное контактное устройство. Технические характеристики боров приведены ДНД обеспечивает переключение контактов при понижении контролируемого давления до установленного значения и возврат в исходное положение при повыш­ении контролируемого давления (с учетом зоны нечувстви-ности). ДВД производит переключение контактов при повышении контролируемого давления до установленного значения и возврат в исходное положение при понижении контролируемого давления (с учетом зоны нечувствительности). Конструктивно каждый датчик включает в себя чувствительный элемент - сильфон и узел настройки уставок. В ДНД предусмотрен также узел настройки зоны нечувствительности. Разброс срабатываний не превышает 0,01 МПа для ДНД и 0,02 МПа для ДВД. Д220А-12 Максимально допустимое давление среды, 2,2 МПа. Пределы уставки срабатывания,(- 0,09)-(+0,15) МПа. Основная погрешность срабатывания, 0,02 МПа. Зона нечувствительности, 0,03-0,1 МПа.Контролируемая среда аммиак в холодильных установках па стационарных (модификация А) и нестационарных (модификация АР) объектах). Габаритные размеры, 200Х155Х85мм.

    Сигнал от датчика температуры поступает на датчик-реле температуры типа

    ТР-ОМ5 (3) предназначен дляиспользования в системах контроля и двухпозиционного регулирования температуры жидких и газообразных сред в холодильных и других установках. Датчики ТР-ОМ5-00-ТР-ОМ5-04 выпускаются с зоной нечувствительности, направленной в сторонуповышения температуры контролируемой среды относительно уставки срабатывания, а остальные приборы - в сторону понижения температуры. Контактное устройство имеет один переключающий контакт. Коммутируемая мощность контактов не более 300 В –А принапряжении 220 В переменного тока и 60 Вт при напряжении220 В постоянного тока. Датчикирассчитаны на работу при температуре окружающего воздуха от-40 до +50 °С и относительной влажности до 98 %. Пределы уставки срабатывания (- 60) – (- 30) °С. Основная погрешность ±1,0 °С. Зона нечувствительности регулируемая 4 – 6 °С. Длина капилляра 1,5; 2,5; 4,0; 10.

    Габаритные размеры 160x104x68 мм, масса не более 2,2 кг. Исполнение обыкновенное, экспортное, тропическое.

    Реле протока сильфонное типа РПС (4) предназначено для контроля наличия потока воды температурой до 70 °С в системах автоматизации различных технологических процессов. Реле должно устанавливаться на горизонтальном участке. Регулировка предела срабатывания осуществляется с помощью специального винта по шкале. Перед установкой реле во втулке, расположенной между двумя сильфонами, просверливается отверстие, диаметр которого определяется по графику зависимости расхода от давления на входе в реле. График приводится в инструкции по эксплуатации. Выходное устройство имеет один замыкающий контакт. Погрешность срабатывания не превышает 10 % от номинального значения расхода.

    Реле рассчитано на работу при температуре окружающего воздуха от 5 до 50 °С и относительной влажности до 95 %. Диаметр условного прохода, 20 мм. Максимально допустимое давление среды, 0,1 МП а. Пределы уставки срабатывания, 0-100 л/мин. Допустимый ток контактного устройства 2 А при напряжении 220 В переменного тока. Габаритные размеры 135x115x18 мм, масса не более 2,5 кг. Исполнение обыкновенное, экспортное, тропическое.

    Реле уровня полупроводниковые типов ПРУ-5М и ПРУ-5МИ (7б,8б,9б,12б,13б) предназначены для контроля уровня аммиака, хладона, воды, дизельного топлива, масла и других жидкостей плотностью не менее 0,52 г/см3 в стационарных и судовых установках. Приборы состоят из первичного (ПП) и передающего (ПРП) преобразователей. В первичном преобразователе перемещение поплавка преобразуется в сигнал переменного тока с помощью катушек, включенных в мостовую схему. Изменение напряжения на катушках происходит в результате изменения их индуктивности за счет перемещения поплавка из магнитного материала. Сигнал с ПП поступает на дифференциальный усилитель ПРП с выходным электромагнитным реле. В зависимости от положения уровня контролируемой жидкости происходит срабатывание выходного реле, контакты которого могут использоваться во внешних цепях контроля и управления исполнительными механизмами.

    Первичный преобразователь реле ПРУ-5МИ предназначен для работы во взрывоопасных зонах помещений и наружных установок, передающий преобразователь используется вне взрывоопасных зон.

    Материал деталей ПП, соприкасающихся с контролируемой средой, - сталь 12Х18Н10Т и сталь 08 КП; поплавок в зависимости от агрессивности контролируемой среды имеет соответствующее ей защитное покрытие.

    Питание реле переменным током напряжением 220 или 380 В частотой 50 или 60 Гц. Потребляемая мощность не более 10 В-А. Габаритные размеры: ПП 90x135x180 мм; ПРП 152х90х Х295 мм; масса: ПП не более 2,5 кг; ПРП не более 2,7кг. Исполнение обыкновенное, тропическое.

    Вентили мембранные бессальниковые с разгрузочным золотником 15кч888р СВМ (5,6, 9в) управляются электромагнитным приводом в водозащищенном исполнении. Герметичность запорного органа обеспечивается при перепаде давления на золотнике не менее 0,1 МПа. Температура окружающей среды для воды и воздуха до 50 °С, для рассола и аммиака от -50 до +50 °С. Диаметр условного прохода 25, 40, 50, 65. Строительная длина 160, 170, 230, 290. Рабочая среда рассол (-40) – (+45),

    аммиак с маслом (-30) – (+45). Условное давление 1,6 МПа. Род тока и напряжения переменный 127, 220, 380; постоянный 110, 220. Масса 6,2; 7,8. Изготовитель или поставщик «Семеновский арматурный завод».

    Чувствительный элемент ТСМ (14-18, 19а) представляет собой бескаркасную обмотку из медной проволоки, покрытую фторопластовой пленкой и помещенную в тонкостенную металлическую гильзу с керамическим порошком. Чувствительный элемент – медные типа ЭЧМ – 070 – диаметр 5 мм и длину 20, 50 или 80 мм. Пределы измерения медных чувствительных элементов от – 50 до + 200 °С, инерционность 15 и 25 с для номинальных статических характеристик 50М и 100М соответственно.

    Сигнал от ТСМ поступает на восьмиканальный прибор УКТ38-В.

    УКТ38-В (19б) Устройство контроля температуры восьмиканальное со встроенным барьером искрозащиты

    УКТ38-В предназначен для контроля температуры в нескольких зонах одновременно (до 8-ми) и аварийной сигнализации о выходе любого из контролируемых параметров за заданные пределы, а также для их регистрации на ЭВМ.

    Применяется для подключения датчиков, находящихся во взрывоопасных зонах в технологическом оборудовании в пищевой, медицинской и нефтеперерабатывающей промышленности. Прибор имеет искробезопасную электрическую цепь уровня, что обеспечивает его взрывозащищенность.

    УКТ38-В представляет собой восьмиканальное устройство сравнения, имеющее восемь входов для подключения датчиков, блок искрозащиты, микропроцессорный блок обработки данных, формирующий сигнал «Авария», и одно выходное реле. Регистрация контролируемых параметров на ЭВМ осуществляется через адаптер сети ОВЕН АС2 по интерфейсу RS-232.

    Входы прибора

    УКТ38-В имеет 8 входов для подключения измерительных датчиков.

    Входы УКТ38-В могут быть только однотипными и выполняются в одной из следующих модификаций:

    01 для подключения термопреобразователей сопротивления типа ТСМ 50М или ТСП 50П;

    03 для подключения термопреобразователей сопротивления типа ТСМ 100М или ТСП 100П;

    04 для подключения термопар типа ТХК(L) или ТХА(K);

    Блок обработки данных предназначен для обработки входных сигналов, индикации контролируемых значений и формирования аварийного сигнала.

    Блок обработки данных УКТ38-В включает в себя 8 устройств сравнения.

    Выходные устройства

    УКТ38-В имеет одно выходное реле «Авария» для включения аварийной сигнализации или аварийного отключения установки.

    Для управления температурой используется регулятор температуры типа РТ-2 (106), датчик которого 10а устанавливается на трубопроводе выхода рассола (ледяной воды) из испарителя.

    Регуляторы температуры типа РТ-2 (10б) предназначены для двух-позиционного РТ2 трехпозиционного РТЗ и пропорционального РТ-П регулирования температуры в системах автоматизации уста¬новок вентиляции, кондиционирования и в системах автоматиза¬ции других технологических процессов. Регуляторы работают в комплекте с термопреобразователями сопротивления ТСМ и ТСП с номинальными статическими характеристика1\ш Гр. 23 и 100П соответственно.

    Двух позиционные регуляторы имеют регулируемую зону воз¬врата 0,5-10 °С; трехпозиционные регуляторы - регулируемую зону нечувствительности 0,5-10 °С. Пропорциональные регуля¬торы работают в комплекте с исполнительным механизмом, имею¬щим реостат обратной связи сопротивлением 120 или 185 Ом. Минимальное значение зоны пропорциональности не более 1 °С, максимальное - не менее 5 °С, чувствительность составляет не более 10 % от зоны пропорциональности. Основная допустимая погрешность не более 1 °С при шкале до 40 °С и не более 2 °С при шкале свыше 40 °С.

    Выходные контакты коммутируют цепи переменного тока до 2,5 А и постоянного тока до 0,2 А при напряжении до 220 В.

    Питание регуляторов переменным током напряжением 220 В частотой 50 или 60 Гц. Потребляемая мощность до 8 В-А.

    Регуляторы рассчитаны на работу при температуре окружа¬ющего воздуха от 5 до 50 °С и относительной влажности до 80 %.

    Габаритные размеры 90x150x215 мм, масса не более 2,5 кг.

    Исполнение обыкновенное, экспортное, тропическое.

    Изготовитель - Ереванский завод приборов.

    ЗАКЛЮЧЕНИЕ

    Сегодня технологии изготовления холодильных установок находятся на очень высоком уровне. Разработка новых моделей холодильных агрегатов сегодня затронула даже сферу микроэлектроники. Так же не обошли стороной и технологии производства холодильных машин и цифровые компьютерные технологии.

    Применение холодильных установок с компьютерным управлением в быту значительно добавляет удобства в их эксплуатацию, создаёт экономию времени, а компьютерный контроль за состоянием узлов агрегата поддерживает его более надёжную и безопасную работу в течение долгих лет.

    Применение же холодильных установок с компьютерным управлением на производстве - повышает эффективность производства, обеспечивает надёжный контроль температуры, тем самым надёжно сохраняя сырьё, и обеспечивает минимальные его потери.

    Пожалуй, основным недостатком таких установок является сложность и высокая стоимость ремонта электронных частей компьютерного управления. Ко всему прочему электронные компоненты требуют особых условий эксплуатации. Ещё одним недостатком является то, что холодильники с компьютерным управлением стоят достаточно дорого, но зато экономия на минимальных потерях сырья при хранении в производстве полностью оправдывает стоимость агрегатов.

    Ещё одной не маловажной проблемой - является нехватка специалистов по обслуживанию такой техники. Но большинство предприятий приглашают специалистов из - за рубежа для обслуживания импортных холодильных установок т.к большая часть холодильников с цифровым управлением поставляется из-за границы.

    СПИСОК ЛИТЕРАТУРЫ

    1 Крылов Н.В. , Гришин Л. М. Экономика холодильной промышленности. М., Агропромиздат, 1987, 272 с.;

    2 Холодильная техника. 1986 , № 11 , с. 2 -4 ;

    3 Оценка и совершентствование условий холодильного хранения овощей. Янковский и др. , Сборник трудов ЛТИХП. Холодильная обработка и хранение пмщевых прпордуктов. Л., 1974 , вып. 2 , с. 125-132;

    4 Ужанский В. С. Автоматизация холодильных машин и установок. М., Пищевая промышленность, 1973 , 296 с.

    5 Проектирование систем автоматизации технологических процессов.

    Справочное пособие под ред. А.С. Клюева 2-е издание, переработанное и

    дополненное Москва Энергоатомиздат 1990г.

    6 Технологические измерения и КИП в пищевой промышленности

    Москва ВО " Агропромиздат" 1990г.

    ОТ ОПАСНЫХ РЕЖИМОВ

    В процессе работы холодильных машин и установок из-за отказов отдельных узлов или агрегатов, а также из-за нарушений в системах энерго- и водоснабжения могут возникать опасные режимы: повышение давления и температуры, уровня жидкости в отдельных аппаратах или узлах машин, прекращение смазки трущихся пар, отсутствие охлаждающей воды и т.д. Если не будут приняты своевременные меры, могут быть повреждены или разрушены компрессоры, теплообменные аппараты или другие элементы установки. При этом возникает серьезная опасность для здоровья и жизни обслуживающего персонала.

    Защита холодильных машин и установок включает в себя целый комплекс технических и организационных мероприятий, обеспечивающих их безопасную эксплуатацию. В этой главе будут рассмотрены лишь те из них, которые выполняются на основе автоматических приборов и устройств.

    СПОСОБЫ ЗАЩИТЫ

    К способам защиты относят остановку машины или всей установки, включение аварийных устройств, выпуск рабочего вещества в атмосферу или перепуск в другие аппараты.

    Остановка машины или всей установки. Этот способ осуществляется с помощью системы автоматической защиты (САЗ), которая состоит из первичных устройств - датчиков-реле защиты (или просто реле защиты) и электрической схемы, преобразующей сигналы от реле защиты в сигнал остановки. Этот сигнал передается в схему автоматического управления.

    Реле защиты воспринимают контролируемые технологические величины и при достижении ими предельно допустимых значений вырабатывают аварийный сигнал. Эти приборы обладают чаще всего релейными двухпозиционными характеристиками. Число входящих в САЗ датчиков-реле определяется минимально необходимым количеством контролируемых величин.

    Электрическая схема выполняется в одном из трех вариантов, в соответствии с чем САЗ бывают однократного действия, с повторным включением и комбинированными.

    САЗ однократного действия осуществляет остановку машины или установки при срабатывании любого реле защиты и делает невозможным автоматический пуск до вмешательства обслуживающего персонала. Этот тип САЗ распространен преимущественно на крупных и средних машинах. Если установка работает без непрерывного обслуживания и оборудование не имеет автоматически включаемого резерва, то САЗ дополняется специальной сигнализацией для экстренного вызова персонала.

    САЗ с повторным включением останавливает машину при срабатывании реле защиты и не препятствует ее автоматическому включению при возвращении реле в нормальное состояние. Ее применяют главным образом в малых установках торгового типа, где стремятся к упрощению схемы автоматики.

    В комбинированных САЗ часть реле защиты, контролирующих наиболее опасные параметры, включают в электрическую схему однократного действия, а часть с менее опасными параметрами - в схему с повторным включением. Это позволяет, не прибегая к помощи персонала, вновь автоматически пускать машину, если это не сопряжено с опасностью аварии.

    На практике встречается также разновидность защиты, называемая блокировкой. Ее отличие состоит в том, что сигнал получают не от реле защиты, а от элемента схемы контроля или управления другим агрегатом или узлом установки (например, насосом, вентилятором и т.д.). Блокировка исключает пуск или работу машины при невыполнении заданного порядка пуска контролируемых агрегатов. Обычно блокировку выполняют по схеме с повторным включением.

    Включение аварийных устройств. Этот способ осуществляется также САЗ.

    К аварийным устройствам относят:

    Предупредительную сигнализацию об опасных режимах, которую применяют на особо крупных установках с непрерывным обслуживанием, чтобы по возможности избежать остановки машины;

    Аварийную сигнализацию, информирующую персонал о срабатывании защиты, а также расшифровывающую конкретную причину аварийного срабатывания;

    Аварийную вентиляцию, включаемую при повышении местной или общей концентрации в воздухе взрыво- и пожароопасных, а также токсичных рабочих веществ (например, аммиака).

    Выпуск рабочего вещества в атмосферу или перепуск в другие аппараты. Этот способ осуществляется специальными предохранительными устройствами (предохранительными клапанами, предохранительными пластинами, плавкими пробками и др.), не входящими в САЗ. Их назначение - предотвратить разрушение или взрыв сосудов и аппаратов при повышении давления в результате неисправности установки, а также в случае пожара. Выбор предохранительных устройств и правила их использования определяются нормативными документами в соответствии с правилами безопасности и эксплуатации сосудов, работающих под давлением.

    ПОСТРОЕНИЕ СИСТЕМ ЗАЩИТЫ

    Системы защиты различаются в зависимости от типа холодильной установки, ее размеров, принятого способа эксплуатации и др. При построении всех САЗ необходимо учитывать общие принципы, обеспечивающие в наибольшей степени безопасность работы. В качестве примера рассматривается принципиальная схема САЗ компрессионной холодильной установки, состоящей из компрессора Км с электродвигателем Д, теплообменных аппаратов ТА и вспомогательных устройств ВУ - насосов, вентиляторов и др. (рис. 7.1). Схема представлена в общем виде без указаний конкретных величин и параметров, подвергаемых контролю.

    Рис. 7.1. Принципиальная схема САЗ

    Следует условиться, что САЗ предназначена для остановки компрессора при достижении одним из параметров предельно допустимого значения.

    САЗ имеет десять каналов защиты. Каналы 1-8 работают от соответствующих реле защиты, воспринимающих технологические параметры. Каналы 9 и 10 обеспечивают блокировку компрессора и вспомогательных устройств.

    В систему входит ключ, с помощью которого при необходимости (при пробах и обкатках) можно выключить часть защитных реле и цепей блокировки (2, 3, 5, 6, 8, 9, 10). Не подлежат выключению те защиты, которые должны функционировать в любом режиме работы установки.

    Электрическая схема САЗ состоит из двух частей. Первая часть, в которую включены каналы 2, 5, 9 и 10, работает по способу с повторным включением, а вторая с остальными каналами обеспечивает защиту, работающую по принципу однократного действия, и контролирует наиболее ответственные параметры. При достижении ими предельно допустимых значений САЗ останавливает компрессор. Последующий пуск его возможен лишь после вмешательства персонала, который пользуется специальной кнопкой ввода в работу защит.

    Сигналы от электрической схемы САЗ подаются в схему автоматического управления АУ. Эти сигналы останавливают двигатель компрессора независимо от сигналов оперативного управления ОУ.

    Кроме основной функции САЗ - аварийной остановки компрессора, она выполняет и вспомогательные операции: включение необходимых аварийных устройств, а также световой и звуковой сигнализации. Расшифровывающая сигнализация защит с повторным включением действует только до тех пор, пока контролируемый параметр не вошел в нормальные пределы. Сигнализация защит однократного действия остается включенной после срабатывания до нажатия кнопки ввода в работу независимо от фактического состояния контролируемого параметра. Такая схема как бы «запоминает» происшедшее срабатывание защиты и информирует персонал в течение неограниченного времени.

    Представленная схема может рассматриваться лишь как пример построения САЗ. Конкретные системы могут от нее отличаться количеством каналов и способами их включения.

    Основным требованием к САЗ является высокая надежность, которая достигается применением высоконадежных реле защиты и элементов электрических схем, резервированием реле и других элементов защиты в особо ответственных случаях, уменьшением числа элементов, последовательно включаемых в САЗ, использованием наиболее безопасных вариантов электрических схем, организацией профилактических проверок и ремонтов в процессе эксплуатации.

    Применение высоконадежных реле защиты и элементов электрических схем - наиболее простой и естественный путь, так как при прочих равных условиях использование более надежных элементов позволяет создать более надежную систему. Следует лишь иметь в виду, что при эксплуатации реле и другие элементы САЗ имеют весьма малую циклическую наработку (малое число срабатываний). Поэтому при оценке надежности в расчет следует принимать не циклическую долговечность и циклическую наработку на отказ, а другие показатели, характеризующие способность элементов сохранять готовность к срабатыванию (например, наработку на отказ по времени). При этом за отказ принимают любое нарушение способности элемента к срабатыванию.

    Резервирование представляет собой параллельное включение двух или более однородных и совместно работающих элементов, выполняющих одинаковые функции. Выход из строя одного из них не нарушает работоспособности системы в целом. Резервирование используют в особо опасных случаях, когда внезапный отказ САЗ может привести к серьезным последствиям. К таким случаям относят, например, защиту от попадания жидкого аммиака в поршневой компрессор. Для этого на сосудах перед компрессором устанавливают основные и резервные реле уровня.

    На упрощенной схеме (рис. 7.2) показан отделитель жидкого аммиака ОЖ, установленный между испарителем и компрессором Км. При нормальной работе жидкий аммиак в отделителе жидкости отсутствует. При выбросе жидкости из испарителя она накапливается в отделителе жидкого аммиака, и, если ее уровень достигает допустимого предела, срабатывают реле защит РЗ 1 и РЗ 2 (на схеме показаны их первичные преобразователи). Оба реле постоянно включены в работу и выполняют одну и ту же функцию. Такое резервирование значительно повышает надежность, так как вероятность одновременного отказа обоих реле крайне мала.

    Уменьшение числа элементов, последовательно включаемых в САЗ, является одним из способов повышения надежности электрических схем САЗ. Наиболее надежна система, в которой реле защиты связаны непосредственно с пускателем двигателя компрессора без промежуточных элементов. Однако такую схему применяют только на самых малых установках. На более крупных установках приходится использовать промежуточные реле, что уменьшает надежность. Поэтому число последовательных промежуточных элементов, входящих в цепь аварийного отключения компрессора, должно быть минимальным.

    Рис. 7.2. Упрощенная схема отделителя жидкости с резервированием реле защиты

    от влажного хода компрессора

    При использовании наиболее безопасных электрических схем обеспечивается остановка компрессора при возникновении отказов в САЗ. Наиболее характерным отказом электрической цепи является обрыв (исчезновение напряжения или тока), что может иметь место при физическом обрыве проводов, подгорании контактов, выходе из строя радиоэлектронных элементов (диодов, транзисторов, резисторов и др.), нарушениях в работе источников электропитания. Для того чтобы указанные отказы сигнализировались как аварийные, необходимо, чтобы в цепях защиты при нормальном состоянии циркулировал ток, а сигнал аварийной остановки соответствовал его прекращению. Следовательно, наиболее безопасной является электрическая схема защиты на нормально замкнутых контактах или других элементах.

    Так, в схеме (рис. 7.3) контакты реле защиты РЗ 1 , РЗ 2 и РЗ 3 замкнуты, если контролируемые величины находятся в нормальных пределах, и разомкнуты при достижении предельно допустимых значений. Эти контакты включены последовательно в цепь обмотки электромагнитного реле РА, которое при срабатывании защиты отключает обмотку магнитного пускателя (на схеме не показан) и останавливает компрессор.

    Рис. 7.3. Электрическая схема защиты на нормально замкнутых контактах

    Когда все контакты реле защит замкнуты, цепь электромагнитного реле можно ввести в работу кратковременным нажатием кнопки КВЗ. При этом через обмотку электромагнитного реле потечет ток, это реле сработает и замкнет свой контакт РА. После отпускания кнопки цепь остается под током. Достаточно одному из реле защит разомкнуть контакт, как электромагнитное реле отпустит и его контакт разомкнется. Повторное включение будет возможно только после нажатия кнопки. Это схема однократного действия. В схеме с повторным включением контакт РА и кнопка не требуются.

    Организация профилактических проверок и ремонтов в процессе эксплуатации играет решающую роль в обеспечении безопасной работы установок. Эти меры, если они выполняются через необходимые промежутки времени, практически исключают опасные ситуации, связанные с внезапными отказами в саз.

    Для организации профилактических проверок необходимо, чтобы САЗ снабжались устройствами и приспособлениями, позволяющими по возможности в полном объеме проверять работоспособность защит. При этом желательно, чтобы проверка не вызывала вывода установки за предельно допустимые режимы. Так, в схеме (см. рис. 7.2) проверить работу реле защит можно без наполнения отделителя жидкости.

    При нормальной работе вентили В 1 и В 2 открыты, а вентиль В 3 закрыт. Первичные преобразователи реле защит РЗ 1 и РЗ 2 подключены к сосуду.

    Для проверки закрывают вентиль В 2 и открывают вентиль В 3 . Из трубопровода жидкость подается непосредственно в поплавковые камеры реле уровня и заполняет их. Если реле исправны, то они, срабатывая, выдают соответствующие сигналы.

    После этого вентиль В 3 закрывают, а вентиль В 2 открывают. Жидкость стекает в сосуд, что свидетельствует об отсутствии засорения соединительного патрубка.

    В процессе эксплуатации должен действовать график профилактических проверок, периодичность которых должна быть выбрана с учетом фактических показателей надежности.

    СОСТАВ САЗ

    Количество параметров, контролируемых с помощью САЗ, зависит от вида оборудования, его размеров и производительности, вида хладагента и др. Обычно число защит увеличивается с увеличением размеров оборудования. Более сложные САЗ обычно применяют на аммиачных установках.

    В табл. 7.1 приведен рекомендуемый перечень контролируемых параметров для наиболее распространенных видов холодильного оборудования. Для некоторых видов оборудования предлагается несколько вариантов набора защит, которые выбираются исходя из конкретных условий. Так, для герметичных компрессоров можно использовать два варианта. Вариант со встроенными устройствами для защиты от повышения температуры обмоток электродвигателей является предпочтительным, так как при том же числе приборов обеспечивается защита от большего числа неисправностей.

    В табл. 7.1 не вошли компрессоры бытовых холодильников и кондиционеров.

    Некоторые из защит, входящих в состав САЗ, не обязательно вводить в схему однократного действия, при необходимости допускается включать их в схему с повторным включением.

    На особо крупных установках с винтовыми и центробежными компрессорами целесообразно применять предупредительную сигнализацию. При достижении параметров предельно допустимых значений включается предупредительная сигнализация. Компрессор останавливается лишь в том случае, когда через заданный промежуток времени параметр не войдет в нормальные пределы. Параметры, допускающие включение через предупредительную сигнализацию, также отмечены в табл. 7.1. При этом следует обратить внимание на надежность устройства временной задержки и при необходимости принять соответствующие меры, например резервирование.


    Таблица 7.1


    Оборудование Давление Температура Уровень жидкости Осевой сдвиг вала Область применения
    кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
    Компрессор поршневой герметичный +* +* +* +* +* +* + Хладоновые компрессоры малых холодильных установок (торговое оборудование, кондиционеры и др.) То же »
    Компрессор поршневой бессальниковый + + + + + +* + + + + + +* + + + + + + + Хладоновые компрессоры средней производительности То же Хладоновые компрессоры большой производительности То же Хладоновые компрессоры малых холодильных установок
    Компрессор поршневой открытый + + + + + + + Хладоновые и аммиачные компрессоры средней производительности То же, большой производительности

    Окончание табл. 7.1

    Оборудование Давление Перепад давлений в маслосистеме Температура Уровень жидкости Осевой сдвиг вала Область применения
    кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
    Агрегат компрессорный винтовой +** + + +**
    Агрегат компрессорный центорожный +** + + +** +** +** +** + Аммиачные и хладоновые агрегаты
    Аммиачный кожухотрубный испаритель +*** Без ограничения
    Испаритель хладоновый с межтрубным кипением +*** То же
    Испаритель хладоновый с внутритрубным кипением +*** »
    Отделитель жидкости, ресивер циркуляционный + »

    Примечание. Звездочка (*) означает, что предусматривается защита:

    * Допускается включение по схеме с повторным включением.

    ** Допускается остановка компрессора после включения предупредительной сигнализации.

    *** Допускается включение через предупредительную сигнализацию.


    АВТОМАТИЗАЦИЯ СИСТЕМ

    КОНДИЦИОНИРОВАНИЯ ВОЗДУХА


    Похожая информация.


    Автоматизация холодильных установок облегчает работу, делает ее безопасной, совершенствует и упрощает технологические процессы. Это важнейшее условие технического прогресса. Автоматизация проводится для снижения доли ручного труда, поддержания стабильных параметров температуры, влажности, давления, а также предотвращения аварийных ситуаций и увеличения продолжительности службы. Так как требуется меньше обслуживающего персонала, то эксплуатация автоматизированных агрегатов обходится дешевле.

    Автоматизация холодильных установок затрагивает управление отдельными операциями - сигнализация, контроль, пуск и выключение определенных механизмов. В целом осуществляется комплексное управление - регулирование и защита. Автоматизировать можно практически любой процесс, но это не всегда целесообразно. Легче всего поддаются автоматизации пароэжекторные и абсорбционные агрегаты, поскольку кроме насосов в них нет лишних движущихся механизмов. С крупными компрессионными моделями все обстоит сложнее. За ними требуется постоянное наблюдение и обслуживание квалифицированным персоналом, поэтому применяют только частичную автоматизацию. Основные элементы системы - измерительный датчик, регулирующий орган и передаточное устройство. Все они взаимосвязаны между собой.

    5 причин приобрести Холодильные установки у Компании АквилонСтройМонтаж

    1. Широчайших модельный ряд
    1. Возможность изготовления нестандартных холодильных установок
    1. Гибкая ценовая политика
    1. Инновационные решения в управлении холодильными агрегатами
    1. Энергосберегающие технологические принципы

    ОСТАВИТЬ ЗАЯВКУ

    Виды приборов автоматизации Существует несколько способов автоматизации, существенно упрощающих производственные процессы. Используются, как единичные опции, так и их комплекс.
      Управление. Специальные технические решения автоматизации отвечают за самостоятельное включение и выключение компрессоров, насосов в соответствии с обозначенным режимом или при колебаниях нагрузки. Устанавливаются реле температуры и времени, реагирующие на изменения или отслеживающие определенный график.Регулирование. Помогают поддерживать на нужном уровне основные рабочие параметры - температуру, давление, влажность. Плавное регулирование производительности позволяет при снижении тепловой нагрузки сохранять конкретную температуру хладоносителя. Также применяется регулирование подачи хладагента в испаритель. Это нужно для обеспечения безопасности работы компрессора, повышения или уменьшения производительности.Сигнализация. Оповещает об опасных изменениях рабочих показателей, режимов, неполадок в функционировании системы.Защита. Помогает исключить вероятность сбоев в работе, опасных ситуаций в результате недопустимого повышения давления, температуры, нарушения функционирования некоторых устройств. Здесь используются всевозможные датчики, термометры, манометры и многое другое
    Полная автоматизация холодильных установок подразумевает их оснащение всеми перечисленными средствами управления, контроля, защиты, сигнализации. Посредством их использования можно получить более совершенное оборудование, повышающее производительность организации.Компания «АквилонСтройМонтаж» предлагает установки всех типов, оснащенные современными средствами автоматизации. По вашему запросу наши инженеры проведут автоматизацию уже имеющейся системы холодоснабжения или разработают для вас полностью автоматизированные установки.