• Что можно приготовить из кальмаров: быстро и вкусно

    ООО «ВЕЛЕБИТ»предлагает на российском рынке современный инновационный материал заменяющий оцинковку для изготовления вентиляционных коробов.

    Этот материал представляет собой панели из пенополиизоцианурата, с двух сторон ламинированные тисненой алюминиевой фольгой. Панели используются для изготовления изолированных воздуховодов, применяемых в системах вентиляции, воздушного отопления и кондиционирования. С помощью панелей изготавливаются воздуховоды высокого качества. Комбинация алюминия и отличного теплошумоизолятора (PIR), обеспечивает высокое качество транспортируемого воздуха (IAQ) и долговечность конструкции. Воздуховоды имеют эстетичный внешний вид. Небольшой вес, простота технологии и легкость монтажа дают возможность быстро изготавливать, перемещать и собирать элементы воздуховода.

    Системы воздуховодов могут быть смонтированы либо в самом помещении, либо снаружи здания. Воздуховоды с изолированными панелями являются прекрасным вариантом вентиляции в промышленных секторах, таких, как пищевая промышленность, электроника, фармацевтика, больницы, медицинские центры и т.д. Там, где есть потребность в обеспечение высокого уровня качества и гигиены. Данные изолированные панели воздуховода соответствуют строгим национальным и международным стандартам в т.ч. пожаробезопасности, что подтверждено сертификатами. Международные стандарты: ASHARE, SMACNA, BS, ЕКС т.д. Технология изготовления воздуховодов доступна, и является практичной и простой для сборки практически любой системы воздуховодов. В настоящее время практически для любого строителя без базовой подготовки, достаточно использование только двух специальных инструментов для установки воздуховодов. ООО «ВЕЛЕБИТ» , имеет высококвалифицированные, инновационные технологии, что гарантирует высокий результат, работая вместе с клиентом и предоставляя всю необходимую техническую и коммерческую поддержку. Наши клиенты со всех континентов готовы подтвердить качество предоставляемых им услуг.

    Особенности технологии панелей

    Гигиенические показатели

    Качество воздуха внутри воздуховода: -Применение алюминия в качестве внутренней поверхности воздуховодов гарантирует стерильность и чистоту; -Отсутствует проблема старения и расслоения изоляционного материала ; -Легкая очистка .

    Влияние сопротивления

    Сокращенное число фланцевых соединений и низкая шероховатость поверхностей позволяют удерживать линейные потери при трении на очень низких значениях, что приводит к снижению эксплуатационных издержек.

    Теплоизоляция

    Теплопроводность (7D, 10 C) = 0,025 (W / м. °C) ;

    Очень хорошая теплоизоляция: толщина 20 или 30 мм ;

    Непрерывная изоляция во всех точках установки ;

    Устранение тепловых воздуховодов ;

    Отсутствие риска конденсации ;

    Меньше затрат на эксплуатацию .

    Акустические свойства

    Акустическое поведение соответствует листовому металлу (GI).

    Герметичность продольных швов

    В системе не используются механические элементы ; -Все части склеены по длине, и скреплены силиконом внутренних углов и с алюминиево й ленто й снаружи ; -Эта система делает практически невозможными какие-либо утечек ;

    Механическая прочность

    Панели обладают высоким уровнем сопротивления при большой нагрузке давления: 20/35 (20 мм): <1,000 Па 30/35 (30 мм): <1,400 Па 20/45 (20 мм): <1,100 Па -Построенная конструкция воздуховода приобретает большое сопротивление и жесткость.

    Стойкость в внешним воздействиям

    Реакция на свет отсутствует ;

    Нет необходимости принимать дополнительные меры предосторожности при установк е воздуховодов внутри здания ;

    Воздуховоды находящиеся вне зданий, должны быть защищены от внешних воздействий : дождь, град .

    Долговечность материалов

    Панели состоят из двух материалов : Внешняя защита: алюминиевая фольга с тиснением на обеих сторонах ; Внутренняя изоляция: жесткая пена .

    Оба материала являются долговечными и прочными, также не подвергаются каким-либ о типо м коррозии и старения .

    Вес

    20/35 (20 мм): вес 1,1 кг / м 2 ; 30/35 (30 мм): вес 1,4 кг / м 2 ; 20/45 (20 мм): вес 1,3 кг / м 2 . -Вес равен 1/6 от веса листового металл а

    Размер и Форма

    Благодаря высокому качеству и отличным характеристикам панелей, появилась возможность создания воздуховодов любой формы и размеров без ограничения в рамках допустимого конструирования подобных воздуховодов; -Вы можете получить, таким образом, различные варианты и формы, которые отвечают всем международным стандартам: ASHRAE, Smacna и т.д. ..

    Легкость в конструировании

    Для того чтобы собрать и установить даже самую сложную систему вентиляции, нужно всего лишь два человека, так как панели имеют маленький вес, в 6-10 раз легче классических воздуховодов. Воздуховоды создают малую нагрузку на несущие конструкции.

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДЛЯ ПРОЕКТНЫХ ОРГАНИЗАЦИ Й

    Polyisocyanurate (PIR) панель из твердой пены, покрытая тисненной алюминиевой фольгой с обеи х сторон, предназначена для изготовления воздуховодов для распределения воздуха , вентиляции , отопления и кондиционирования (HVAC) .

    РАЗМЕРЫ

    Стандартная толщина панели составляет 20 мм, с допустимым отклонением +1,5-1 мм (согласно EN 823 стандарта) Стандартная длина панели составляет 3.000 мм с допустимым отклонением +/-7 мм (EN 822 стандарта) Стандартная ширина панели составляет 1.200 мм с допустимым отклонением +/-2 мм (согласно EN 822 стандарта) Прямоугольность панели точна с допустимым отклонением +/-2 мм (проверенный согласно EN 824 стандарта) По заказу возможно изготовление панелей другой длины и толщины, соблюдая те же отклонения, как описано выше.

    ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ ОСОБЕННОСТИ

    Polyisocyanurate (PIR) твердая пена производится с помощью реакции между полимерами и полиизоцианатами. Химическая реакция происходит путем полимеризации сырья, с переходом от жидкого к твердому состоянию. Полученный полимер физиологически и химически инертен, нерастворимый и неспособен быть усвоенным. Номинальная плотность панели PIR-ALU составляет 35 кг/м 3 с минимальным значением 33 кг/м 3 . Покрытие панели состоит из 60 μm рельефной алюминиевой фольги с защитным лаком с обеих сторон. Пенообразователь – не содержит CFC и HCFC. Панель -продукт без волокон.

    МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

    Сопротивление сжатию -3,0 kg/cm2 +/-0,5 (проверенная согласно EN 826 стандартов).

    ТЕПЛОПРОВОДНОСТЬ

    Благодаря высокому числу закрытых ячеек (более 95 %) у панели есть начальная теплопроводность 0,025 W/m K (7d, 10oC), согласно EN 12667 стандартов.

    ОГНЕСТОЙКОСТЬ

    Панели соответствуют классу M1 согласно UNE 23727 испанских национальных стандартов.

    ДЫМООБРАЗУЕМОСТЬ

    Панели были проверены в Испании и соответствуют классу VOF4=4.1 (соответствие с регулированием NF-X10.702).

    ЖЕСТКОСТЬ

    Панель имеет упругую жесткость 190.000 N.mm2 . Панели могут быть классифицированы как Класс 3 согласно prCEN/TC 156/WG3N207/ 4

    ВОДОПОГЛОЩЕНИ Е

    Панели после 28 дневного полного погружения в воду не увеличивает свой вес больше че м

    на 1, 5 % согласно EN 12087 .

    ВОДПРОНИЦАЕМОСТЬ

    Из-за толщины алюминиевой фольги (> 50 μm) продукт можно рассмотреть как барьер пара.

    ТЕМПЕРАТУРА ИСПОЛЬЗОВАНИЯ

    Панели могут постоянно использоваться в диапазоне температуры от–40 o до +80 o C бе з каких либ о существенных изменений в тепло-вентиляционных и изолирующих свойствах . Коэффициент линейного теплового расширения составляет 40x10 -6 мм/мм K .

    УПАКОВКА

    Панели упаковываются в пачки по 12 шт. Пачка защищена с картоном, высота пачки составляет приблизительно 0,24 м. и имеет суммарную площадь поверхности панелей 43,2 м 2 (исходя из стандартных размеров 3000 x 1200 мм).

    Современное жилище человека – это, фактически, замкнутая экосистема. Пусть пока ещё не идеальная, но с развитием технического прогресса из года в год ее совершенствуют. И чтобы убедиться в этом, достаточно просто проследить развитие технологии вентиляции и очистки воздуха в жилых помещениях. познакомиться с последними достижениями инженерной мысли в этом сегменте вы сможете на сайте компании "Дышим дома" https://www.vozduh66.ru.

    Современные системы очистки воздуха

    На сегодняшний день самая популярная и востребованная система вентиляции городских помещений любого предназначения - приточно-вытяжная. К её преимуществам, в первую очередь, следует отнести:

    • Простоту монтажа;
    • Надежность работы;
    • Длительные сроки службы;
    • Универсальность.

    На последнем преимуществе нам хотелось бы остановиться более подробнее. Разные жилые дома, разные люди предъявляют к приточно-вытяжной вентиляции разные требования. И чтобы удовлетворить этим требованиям, в приточно-вытяжную вентиляцию устанавливают разнообразные системы очистки воздуха. Именно они придают притяжно-вытяжной вентиляции универсализм применения и широкий спектр эксплуатационных характеристик. На современном рынке присутствует огромное число разнообразных очистительных систем, различающихся между собой принципом действия. Перечислим только некоторые из них.

    1. Принцип плазмокаталитического эффекта.

    Системы очистки, работающие по этому принципу, разлагают газообразные загрязняющие вещества при помощи плазмохимических и каталитических реакций до элементарных газов, например, до углекислого и до водяного пара. Кроме того, эта технология позволяет вырабатывать озон, который дополнительно освежает воздух и очищает его от болезнетворных микроорганизмов.

    2. Принцип фильтрации воздуха.

    Выше описанная технология очень эффективна, но при этом крайне энергетически затратна. Мощность одной плазмокаталитической установки может варьироваться от 10 до 50 киловатт, что может себе позволить далеко не каждый потребитель. Поэтому для массового покупателя предлагаются фильтрующие системы очистки воздуха. И это вовсе не означает, что они хуже очищают воздух. Это совершенно не так. У них просто другой, более дешёвый принцип работы, который никак не влияет на качество очистки.

    Так, например, компания Daikin начала оснащать свои системы очистки семилепистковым фильтром, срок службы которого достигает 7 лет!

    3. Генераторы отрицательных ионов.

    Ещё один способ очистки воздуха – разрушение сложных органических молекул, являющихся, в большинстве случаев, источников неприятного запаха, отрицательными ионами.

    Радиальные вентиляторы типа WRW

    Регулируемые радиальные вентиляторы низкого давления типа WRW производства «КОРФ» , которые применяются в системах вентиляции и кондиционирования воздуха, обеспечивают расход воздуха до 7300м 3 /ч. Вентиляторы предназначены для перемещения воздуха и других невзрывоопасных газовых смесей. Вентиляторы применяются для непосредственной установки в прямоугольный канал систем кондиционирования воздуха и вентиляции промышленных и общественных зданий. Допустимая температура перемещаемого воздуха от -30°С до +40°С. Вентилятор изготовлен из оцинкованного стального листа марки 08ПС в стандартном исполнении.

    Рабочие колеса ZIEHL-ABEGG качественные, хорошо сбалансированные, следовательно, шумовые характеристики не хуже, а на некоторых типоразмерах и лучше, чем у импортных аналогов. Испытания проводились в ГосНИИЦАГИ как на аэродинамику, так и на акустику. Получены официальные заключения и протоколы испытаний. Качество спирали вентилятора — одной из основных деталей, от которой зависит аэродинамические характеристики вентилятора, получено специальным методом, разработанным специалистами фирмы «КОРФ», что является новой технологией.

    Вентиляторы WRW изготавливаются в восьми типоразмерах. В каждом типоразмере имеется несколько моделей вентиляторов в зависимости от вида применяемого вентилятора. Производственное объединение «КОРФ» осуществляет комплексный подход к созданию микроклимата в здании с помощью высококачественного оборудования: вентиляторов, водяных обогревателей (двух- и трехрядных), электрических обогревателей, шумоглушителей, фильтров (карманных, карманных укороченных, кассетных), заслонок регулирующих, управляющих блоков, промышленных воздушных завес, секций бактерицидной обработки воздуха, приточных установок, центральных кондиционеров.

    Секции бактерицидной обработки воздуха

    Секции бактерицидной обработки воздуха типа SBOW предназначены для обеззараживания воздуха в медицинских, спортивных, детских, учебных, пищевых производствах и других помещениях. Как известно, в соответствии с руководством Р3.1.683-98 «Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха и поверхностей в помещениях» Государственная система санитарно-эпидемиологического нормирования Российской Федерации регламентирует помещения, подлежащие оборудованию бактерицидными облучателями для обеззараживания воздуха, по пяти категориям в зависимости от необходимого уровня бактерицидной эффективности и объемной дозы (экспозиции) для Staphilocjccus aureus , выбранного в качестве эталона. Секции бактерицидной обработки воздуха SBOW позволяют осуществлять бактерицидную обработку воздуха во всех пяти категориях помещений с требуемым уровнем бактерицидной эффективности.

    В качестве источников ультрафиолетового бактерицидного излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-31 нм (нормировка осуществляется по длине волны 254 нм). К таким лампам относятся ртутные низкого давления, а также ксеноновые импульсные лампы. В зависимости от расхода воздуха определяется необходимое количество ламп в устройстве бактерицидной обработки воздуха для разных категорий помещений. Более точно количество и тип бактерицидных ламп подбирается исходя из данных об объеме обрабатываемого воздуха, размерах воздуховода и категории помещения.

    При применении устройств бактерицидной обработки в системе приточно-вытяжной вентиляции данные устройства размещаются в выходной камере. Секции SBOW представляют собой канальные устройства, которые устанавливаются в канал прямоугольного воздуховода и осуществляют дезинфекцию проходящего через него воздуха. Таким образом, бактерицидную обработку воздуха осуществляется непосредственно в канале воздуховода и не требует специальных мер безопасности для людей, находящихся в помещении. Высокоточное немецкое оборудование, немецкие технологии производства, наладка и тестирование рабочих параметров обеспечивают высокое качество выпускаемого вентиляционного оборудования.

    Благодаря этим условиям, на выпускаемое оборудование предоставляется гарантия до 5-ти лет. Завод находится в Подмосковье, поэтому отгрузка товара производится в течение дня с момента оплаты. Возможно производство оборудования по индивидуальному заказу. На всю производимую продукцию предоставляются каталоги.

    Качество изготовления, гибкую маркетинговую политику ООО «ПО КОРФ» оценили и его клиенты, среди которых такие известные фирмы и организации как: офисное здание холдинга «Технониколь» (г. Москва); сеть ресторанов «Елки-палки» (г. Москва); сеть ресторанов «Патио Пицца» (г. Москва, г. Омск); школа пилотов «Боинг» (г. Москва); «Екатерининский музей» в Царицыно (г. Москва); Музей усадьба «Остафьево» (г. Москва); Музей «Эрмитаж» (г. Санкт-Петербург); Концерн «Калина» (г. Екатеринбург); Аэропорт «Кольцово» (г. Екатеринбург); Отель «Центральный» (г. Екатеринбург); «Промстройбанк» (г. Омск); «Сбербанк» (г. Тольятти).

    Описание:

    Недостаток профессиональной информации относительно надежности, качества и оптимизации вентиляционных систем привел к появлению ряда исследовательских проектов. Один из таких проектов, Building AdVent, был реализован в странах Европы с целью распространения среди проектировщиков информации об успешно внедренных вентиляционных системах. В рамках проекта были исследованы 18 общественных зданий, расположеных в различных климатических зонах Европы: от Греции до Финляндии.

    Анализ современных вентиляционных технологий

    Недостаток профессиональной информации относительно надежности, качества и оптимизации вентиляционных систем привел к появлению ряда исследовательских проектов. Один из таких проектов, Building AdVent, был реализован в странах Европы с целью распространения среди проектировщиков информации об успешно внедренных вентиляционных системах. В рамках проекта были исследованы 18 общественных зданий, расположеных в различных климатических зонах Европы: от Греции до Финляндии.

    Проект Building AdVent основывался на инструментальном измерении параметров микроклимата в здании после его ввода в эксплуатацию, а также на субъективной оценке качества микроклимата, полученной путем опроса служащих. Были измерены основные параметры микроклимата: температура воздуха, скорость воздушных потоков, а также воздухообмен в летний и зимний периоды.

    Проект Building AdVent не ограничивался обследованием вентиляционных систем, поскольку качество внутреннего микроклимата и энергоэффективность здания зависят от множества разных факторов, включающих архитектурные и инженерные решения здания. Для оценки энергетической эффективности зданий обобщались данные по системам отопления, вентиляции и кондиционирования воздуха, а также другим системам – потребителям тепловой и электроэнергии. Ниже приводятся результаты оценки трех зданий.

    Описание зданий-представителей

    Здания-представители расположены в трех различных регионах с существенно разными климатическими условиями, определяющими состав инженерного оборудования.

    Климатические условия Греции в общем случае обуславливают высокую нагрузку на систему холодоснабжения; Великобритании – умеренные нагрузки на системы отопления и холодоснабжения; Финляндии – высокую нагрузку на систему отопления.

    Здания-представители в Греции и Финляндии оборудованы системами кондиционирования воздуха и центральными системами механической вентиляции. В здании, расположенном в Великобритании, используется естественная вентиляция, а охлаждение помещений осуществляется за счет ночного проветривания. Во всех трех зданиях-представителях допускается возможность естественного проветривания помещений за счет открывания окон.

    Пятиэтажное офисное здание, введенное в эксплуатацию в 2005 году, расположено в городе Турку на юго-западном побережье Финляндии. Расчетная температура наружного воздуха в холодный период -26 °C, в теплый – +25 °C при энтальпии 55 кДж/кг. Расчетная температура внутреннего воздуха в холодный период +21 °С, в теплый период – +25 °С.

    Рисунок 1.

    Общая площадь здания составляет 6 906 м 2 , объем – 34 000 м 3 . В средней части здания находится большой атриум со стеклянной крышей, в котором расположены кафе и небольшая кухня. Здание рассчитано на 270 служащих, но в 2008 году в нем регулярно работали 180 сотрудников. На первом этаже, площадью 900 м 2 , располагаются мастерская и складские помещения. Остальные четыре этажа (6 000 м 2) заняты офисными помещениями.

    Здание разделено на пять вентиляционных зон, каждая из которых оборудована отдельной установкой центрального кондиционирования воздуха, а также охлаждающими балками в отдельных помещениях (рис. 2).

    Наружный воздух подогревается или охлаждается в установке центрального кондиционирования, затем раздается в помещения. Подогрев приточного воздуха осуществляется частично за счет рекуперации теплоты вытяжного воздуха, частично посредством калориферов. При необходимости воздух в отдельном помещении дополнительно охлаждается охлаждающими балками, управляемыми комнатными термостатами.

    Температура приточного воздуха поддерживается в переделах +17...+22 °С. Регулировка температуры осуществляется за счет изменения скорости вращения рекуперативного теплообменника и регулирующих клапанов расхода воды нагревательного и охлаждающего контуров.

    Системы отопления и охлаждения в здании присоединены к сетям центрального тепло- и холодоснабжения по независимой схеме через теплообменники.

    Офисные помещения оборудованы радиаторами водяного отопления с терморегулирующими клапанами.

    Расход воздуха в офисных помещениях поддерживается постоянным. В помещениях переговорных расход воздуха переменный: при использовании помещений регулировка расхода воздуха осуществляется по показаниям датчиков температуры, а в отсутствии людей – воздухообмен уменьшается до 10 % от нормативного значения, составляющего 10,8 м 3 /ч на 1 м 2 помещения.

    Здание в Греции

    Здание расположено в центральной части Афин.

    В плане оно имеет форму прямоугольника длиной 115 м и шириной 39 м, общей площадью 30 000 м 2 . Общая численность персонала составляет 1 300 человек, более 50 % которых работают в помещениях с высокой плотностью размещения персонала – до 5 м 2 на человека.

    Расчетная температура внутреннего воздуха в холодный период +21 °С, в теплый период – +25 °С.


    Рисунок 3.

    Здание в Греции

    Здание было реконструировано в 2006 году в рамках демонстрационного проекта ЕС. В ходе реконструкции были выполнены следующие работы:

    Установка солнцезащитных устройств на южном и западном фасадах здания для оптимизации теплопоступлений от солнечной радиации как в холодный, так и в теплый периоды;

    Двойное остекление северного фасада;

    Модернизация инженерных систем и оборудование их системами автоматизации и диспетчеризации;

    Установка потолочных вентиляторов в офисных помещениях с высокой плотностью размещения персонала для повышения уровня теплового комфорта и уменьшения использования систем кондиционирования воздуха; потолочные вентиляторы могут управляться вручную либо посредством системы автоматизации и диспетчеризации здания по сигналам датчиков присутствия людей;

    Энергоэффективные люминисцентные лампы с электронным управлением;

    Вентиляция с переменным расходом, регулируемая по уровню СО 2 ;

    Установка фотоэлектрических панелей общей площадью 26 м 2 .

    Вентиляция офисов осуществляется либо установкой центрального кондиционирования воздуха, либо при естественном проветривании за счет открывающихся окон. В офисных помещениях с большой плотностью размещения персонала используется механическая вентиляция с переменным расходом воздуха, управляемая по показаниям датчиков СО 2 , с регулируемыми приточными устройствами, обеспечивающими 30 или 100 % расход воздуха. Установки центрального кондиционирования оборудованы воздуховоздушными теплообменниками для утилизации теплоты вытяжного воздуха для подогрева или охлаждения приточного. Для снижения пиковой холодильной нагрузки используется ночное захолаживание теплоемких конструктивных элементов воздухом, охлажденным в установке центрального кондиционирования.

    Трехэтажное здание расположено в юго-восточной части Великобритании. Общая площадь составляет 2 500 м 2 , численность персонала – около 250 человек. Часть персонала работает в здании постоянно, остальные находятся в нем периодически, на временных рабочих местах.

    Большую часть здания занимают офисные помещения и переговорные.

    Здание оборудовано солнцезащитными устройствами – козырьками, расположенными на уровне кровли на южном фасаде для защиты от прямых солнечных лучей в летнее время. В козырьки встроены фотоэлектрические панели для выработки электроэнергии. На кровле здания установлены солнечные коллекторы для подогрева воды, используемой в туалетах.

    В здании используется естественная вентиляция за счет окон, открывающихся автоматически или вручную. При низких температурах наружного воздуха или в дождливую погоду окна закрываются автоматически.

    Бетонные потолки помещений не закрыты декоративными элементами, что позволяет захолаживать их при ночном проветривании для снижения дневных пиковых холодильных нагрузок в летнее время.

    Энергетическая эффективность зданий-представителей

    В здании, расположенном в Финляндии, организовано централизованное теплоснабжение. Значения энергопотребления, приведенные в табл. 1, были получены в 2006 году и скорректированы с учетом фактического значения градусо-суток.

    Расход энергии на охлаждение был известен, поскольку в здании используется система центрального холодоснабжения. В 2006 году холодильная нагрузка составила 27 кВт ч/м 2 . Для определения затрат электроэнергии на охлаждение данная величина делится на холодильный коэффициент, равный 2,5. Остальное электропотребление – это общее электропотребление системами ОВК, офисным и кухонным оборудованием и прочими потребителями, которое нельзя разделить на отдельные составляющие, так как здание оборудовано только одним прибором учета электроэнергии.

    В здании, расположенном в Греции, учет расхода электроэнергии ведется более подробно, поэтому общая величина потребления электроэнергии, составляющая 65 кВт ч/м 2 , включает в себя 38,6 кВт ч/м 2 на освещение и 26 кВт ч/м 2 на прочее оборудование. Эти данные были получены после реконструкции здания за период с апреля 2007 года по март 2008 года.

    Электропотребление здания в Великобритании, как и здания в Финляндии, нельзя разделить на составляющие. Здание не оборудовано отдельной системой холодоснабжения.

    *Затраты энергии на отопление и холодоснабжение не скорректированы на климатические характеристики района строительства

    Качество микроклимата в зданиях-представителях

    Качество микроклимата в здании, расположенном в Финляндии

    В ходе исследования качества микроклимата производились измерения температуры и скорости воздушных потоков. Расход вентиляционного воздуха принят по данным протоколов ввода здания в эксплуатацию, поскольку здание оборудовано системой с постоянным расходом в 10,8 м 3 /ч на м 2 .

    Измерения качества внутреннего воздуха по стандарту EN 15251:2007 показывают, что внутренний микроклимат соответствует преимущественно высшей категории I.

    Измерения температуры воздуха производились на протяжении четырех недель в мае (отопительный период) и июле-августе (период охлаждения) в 12 помещениях.

    Измерения температуры показывают, что температура поддерживалась в диапазоне +23,5...+25,5 °С (категория I) в течение 97 % периода использования здания на протяжении всего периода охлаждения.

    В течение отопительного периода температура поддерживалась в диапазоне +21,0...+23,5 °С (категория I) во время часов использования здания на протяжении всего периода наблюдения. Амплитуда дневных колебаний температуры в рабочее время составляли приблизительно 1,0–1,5 °С во время отопительного периода. Локальный критерий теплового комфорта (уровень сквозняков), индекс комфортности по Фангеру (PMV) и ожидаемый процент неудовлетворенных (PPD) были определены по краткосрочным наблюдениям скорости воздуха и температуры в марте 2008 года (отопительный период) и июне 2008 года (период охлаждения) согласно стандарту ISO 7730:2005. Результаты указывают на хороший общий и локальный тепловой комфорт (табл. 2).

    Качество микроклимата в здании, расположенном в Великобритании

    Измерение температуры воздуха проводилось в здании в течение шести месяцев в 2006 году. Температура воздуха в помещениях превышала +28 °С в шести точках наблюдения.

    Замеры концентрации СО 2 фиксировали значения в диапазоне 400–550 ррm с периодическими пиками. В настоящее время проводятся дополнительные наблюдения в холодный, теплый и переходный периоды. Эти наблюдения включают в себя измерения температуры воздуха, относительной влажности и концентрации СО 2 . Предварительные результаты показывают, что температуры значительно ниже, чем показали изначальные измерения. Например, с 24 июня 2008 года по 8 июля 2008 года температура в представительных центральных точках на этажах 1 и 3 превышала +25 °С на протяжении всего 4 часов, а концентрация СО 2 превышала 700 ррm на протяжении всего 3 часов, с пиками ниже 800 ррm.

    Качество микроклимата в здании, расположенном в Греции

    Типичные значения температуры воздуха в летний период в офисных помещениях составляют +27,5...+28,5 °С. Число часов с температурой выше +30 °С было минимальным. Даже при экстремальных наружных температурах (выше +41 °С), температура внутреннего воздуха была постоянной и оставалась ниже наружной температуры как минимум на 10 °С. В летние месяцы 2007 года средняя температура в зонах наиболее плотного размещения служащих (до 5 м 2 на человека) лежала в диапазоне +24,1...+27,7 °С в июне, +24,5...+28,1 °С в июле и +25,1...+28,1 °С в августе; все эти значения не выходят за пределы диапазона теплового комфорта.

    На протяжении всего периода наблюдения (апрель 2007 – март 2008 г.) максимальные значения концентрации СО 2 выше 1 000 ppm были зарегистрированы во многих зонах наиболее плотного размещения служащих. Концентрация СО 2 превышала 1 000 ppm в 57 % наблюдаемых точек в июне и июле, в 38 % офисов в августе, 42 % в сентябре, в 54 % в октябре, в 69 % в ноябре, в 58 % в декабре и 65 % в январе. Среди всех офисных помещений наибольшая концентрация СО 2 была отмечена в офисах с максимальной плотностью пользователей. Однако даже в этих зонах средняя концентрация СО 2 была в диапазоне 600–800 ppm и соответствовала стандартам ASHRAE (максимум 1 000 ppm в течение 8 непрерывных часов).

    Субъективная оценка качества микроклимата служащими

    В здании, расположенном в Финляндии, большая часть помещений не оборудована индивидуальным регулированием температуры. Уровень удовлетворенности температурой воздуха был практически ожидаемый для офисов без средств индивидуального контроля. Уровень удовлетворенности общим микроклиматом, качеством внутреннего воздуха и освещением был высоким.

    В здании, расположенном в Греции, большая часть служащих не была удовлетворена температурой и уровнем вентиляции на рабочих местах, но при этом была больше удовлетворена освещением (естественным и искусственным) и уровнем шума.

    Несмотря на выявленные проблемы с температурой и качеством воздуха (вентиляцией) большинство людей положительно оценивали качество внутреннего микроклимата.

    Здание в Великобритании характеризуется высоким уровнем удовлетворенности качеством внутреннего микроклимата в летний период. Тепловой комфорт в зимний период оценивался как низкий, что, возможно, указывает на проблемы со сквозняком в здании с естественной вентиляцией. Так же, как и в Финляндии, уровень удовлетворенности акустическим комфортом оказался низок.

    Таблица 3
    Субъективная оценка качества микроклимата помещений
    по результатам опросов служащих
    Финляндия Греция Великобритания
    Лето Зима Лето Зима
    Доля служащих, удовлетворенных общим качеством микроклимата помещений, % 86 91 73 82 69
    Доля служащих, удовлетворенных общим качеством теплового комфорта, % 73 76 43 77 61
    Доля служащих, удовлетворенных качеством внутреннего воздуха, % 82 90 42 93 90
    Доля служащих, удовлетворенных качеством акустического комфорта, % 59 57 68 51 65
    Доля служащих, удовлетворенных качеством освещения, % 95 95 82 97 90

    Выводы

    Результаты исследований трех зданий показывают, что служащие больше удовлетворены качеством микроклимата в летний период в здании с естественной вентиляцией без охлаждения (Великобритания), чем качеством микроклимата в офисе, оборудованном системой центрального кондиционирования с высокими значениями вентиляционного воздухообмена (10,8 м 3 /м 2) и низкой плотностью служащих (Финляндия). В то же время, в здании в Финляндии, согласно измерениям, отличное качество внутреннего микроклимата.

    Скорость воздушных потоков и уровни сквозняков были низкими, и внутренний климат был оценен как соответствующий наивысшей категории по стандарту EN 15251:2007. Учитывая эти данные измерений, удивительно, что уровень удовлетворенности пользователей оказался ниже 80 %. Частично эти результаты можно объяснить очень низким уровнем удовлетворенности акустическим комфортом. Вполне вероятно, что некоторые пользователи не чувствуют себя комфортно в больших офисных помещениях, а отсутствие возможности индивидуального регулирования температуры может усилить неудовлетворенность тепловым комфортом.

    Результаты исследований показали, что в зданиях-представителях повышенный вентиляционный воздухообмен не оказывает существенного влияния на энергоэффективность: расход тепловой энергии в здании, расположенном в Финляндии, был ниже, чем в здании в Великобритании. Этот наблюдение демонстрирует эффективность утилизации (рекуперации) теплоты вентиляционного воздуха. С другой стороны, результаты исследований показывают, что существенную долю энергопотребления составляют затраты не тепловой энергии на отопление и холодоснабжение, а электрической энергии на холодоснабжение, освещение и другие нужды. Наилучший учет и оптимизация энергопотребления реализованы в здании, расположенном в Греции, что указывает на необходимость более тщательной проработки проектов в части электроснабжения. В качестве первоочередного мероприятия целесообразно повысить качество учета электропотребления.

    Перепечатано с сокращениями из журнала «REHVA journal».

    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом .

    Итак, «разумная теплица» — это, прежде всего, автоматизированная конструкция, позволяющая производить работы с наименьшими физическими затратами. Чем больше автономных функций будет выполнять данное строение, тем меньше труда и времени придется тратить на обработку и уход за урожаем.

    Выбирая или собирая автоматическую теплицу своими руками, нужно четко понимать, каких результатов можно ожидать от данной системы.

    Существуют следующие современные технологии для теплиц:

    • автоматический капельный ;
    • система поддержания температуры воздуха;
    • автоматизированная налаженность и ;
    • теплоизоляция и подогрев;
    • система туманообразования низкого давления для теплиц.

    Аккумулирование тепла

    Первое ради чего устанавливают – это тепло . Поддерживая оптимальную температуру почвы и воздуха можно добиться урожайности в холодную или чересчур жаркую пору года.

    Обогреть сооружение можно используя электрические обогреватели .

    Как вариант можно оборудовать ее теплоизоляционным материалом для лучшего аккумулирования тепла (воздушно – пузырчатая пленка, двойное стекло, тепловые экраны, дерево).

    Утепляя теплицу, не стоит забывать, что тепло может «ускользать» через треснутое стекло или вентиляционные проемы и форточки.

    Утепляя , рентабельно используется солнечная энергия , за счет которой можно добиться дополнительного утепления и обогрева.

    Аккумулировать теплоэнергию возможно при помощи труб установленных под крышей теплицы, работающих на вентиляторах обратного направления .

    Вентиляция воздуха и проветривание

    Для контроля температуры воздуха можно использовать вентиляционные системы теплиц. Многие растения нуждаются не только в подогреве , но и охлаждении и регулярном притоке свежего воздуха. Автономные системы могут быть снабжены автоматическим открывание и закрыванием форточек, работая при помощи , электросистем или теплопривода.

    Гидравлические системы не требуют подачи электроэнергии и зачастую применяются для небольших парников. Реагируя на температурные перепады, устройство плавно корректирует показания термометра. Комфортный температурный режим возможно поддерживать используя систему зашторивания в теплицах.

    В зимнее время года такой автомат для теплицы помогает сохранить тепло, а в жару защищает урожай от перегрева. Сетка для затенения помогает вентилировать воздух при этом выбрасывая ненужный горячий воздух. Открытие и закрытие сетки контролируется электромотором.

    Тепловые экраны делятся в зависимости от модификаций:

    • энергосберегающая. Обеспечивает сохранность температуры. Используется в регионах с преимущественно прохладными климатическими условиями;
    • затеняющая. Фольга, используемая в производстве создает светоотражающий эффект тем самым препятствует проникновению неблагоприятного горячего воздуха;
    • комбинированная. Включает в себя энергосберегающий и затеняющий эффект, используется в жарких регионах;
    • затемняющая. Используется для выращивания тенелюбивых саженцев, имеет 100% эффект тени;
    • световозвращающая . Применяется в парниках с искусственным освещением. Обладает тепло и влаго- пропускной способностью.

    Термоэкран – еще одна разновидность системы зашторивания. Регулировать положение экрана возможно используя автоматизированную систему микроклимата. Существуют два вида зашторивания:

    • боковое;
    • вертикальное.

    Механизм зашторивания устанавливается, учитывая погодные условия необходимые для растений. Движение механизма происходит за счет реечной передачи или стальных тросов.

    Технология вентиляции в :

    Система орошения

    Следующим пунктом в автоматизации теплицы будет система орошения . Увлажнение и полив необходим растениям не меньше чем воздух или освещение. Автоматизировать полив можно с помощью устройств способных контролировать объем, напор и время полива. На сегодняшний день востребована , внутрипочвенная и дождевая система полива.

    1. Капельная система осуществляет подачу воды к корням растений, затрачивая минимальное количество воды. Кстати такую можно сделать своими руками.
    2. Внутрипочвенная система предполагает поступление влаги непосредственно к корням растений, сохраняя структуру почвы и поддерживая оптимальный уровень увлажнения (например с помощью ).
    3. Дождевая система работает при помощи оросительных насадок оборудованных вверху теплицы. Это самая простая и равномерно увлажняющая конструкция.

    Варианты освещения

    Следующее что нужно для автоматической теплице из поликарбоната это освещение . Ведь растениям необходимо очень много света, в особенности в период интенсивного роста, а в летний период наоборот нуждаются в затенении.

    Планируя конструкцию оранжереи необходимо учитывать разновидность выращиваемых культур, например, тропическим растениям нужно намного больше света и поэтому можно дополнительно освещать только половину теплицы . Искусственное освещение легко регулируется, а подсветить культуру можно непосредственно в радиусе ее выращивания.

    Для освещения используются люминесцентные, газоразрядные лампы.

    Для проращивания рассады, а также дополнительного освещения зимой или в ночное время суток используются люминесцентные лампы, работающие по принципу дневного света.

    В промышленных масштабах агротеплиц применяются газоразрядные лампы ( , ртутные, металлогалогенные).

    Наиболее популярным вариантом пользуются светодиодные светильники, обладающие неограниченным сроком службы и максимальной безопасностью. Провести освещение в теплицу можно самостоятельно.

    Как видите можно легко сделать теплицу-автомат своими руками, достаточно продумать идеальное месторасположение.

    Подводка электроэнергии подразумевает подпитку от электрощитовой или другого источника электроэнергии, поэтому необходимо продумать максимально удобное расстояние от парника к источнику энергии , от которой будет происходить подпитка. Тоже самое касается и системы полива, которая напрямую зависит от водоснабжения.

    Преимущества автоматизации

    Использование автоматической системы для теплиц дают возможность значительно облегчить труд на своем садовом участке и увеличить урожайность до нескольких раз. Установив автомат для теплицы своими руками достижимо создать благоприятные условия для развития и роста растений без участия человека.

    Автономные системы орошения позволят сэкономить время , затраченное на полив, особенно на дачных участках, когда требуется полив даже в будние дни. Количество расходуемой воды и удобрений также существенно снижаются. Освещение и теплоподогрев позволяют круглогодично выращивать овощи и зелень в парниках.

    Тепер Вы знаете все об автоматизации теплиц своими руками. Установив систему управления теплицей, трудозатратность снижается в несколько раз, а это значит, что садовый участок — это не только место для физической работы, а еще и место, где можно насладиться отдыхом и единением с природой!